
Author Manuscript – Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 283–287, Iowa City, IA, USA, 2020. 

https://doi.org/10.1109/ISBI45749.2020.9098440 
Copyright © 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. 

COMPENSATORY BRAIN CONNECTION DISCOVERY IN ALZHEIMER’S DISEASE 
 

Iman Aganj,1,2 Aina Frau-Pascual,1 Juan E. Iglesias,1,2,3 Anastasia Yendiki,1 

Jean C. Augustinack,1 David H. Salat,1 and Bruce Fischl1,2 

 

1. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School 

2. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology 

3. Center for Medical Image Computing (CMIC), University College London, London, UK 
 

ABSTRACT 

 

Identification of the specific brain networks that are 

vulnerable or resilient in neurodegenerative diseases can help 

to better understand the disease effects and derive new 

connectomic imaging biomarkers. In this work, we use brain 

connectivity to find pairs of structural connections that are 

negatively correlated with each other across Alzheimer’s 

disease (AD) and healthy populations. Such anti-correlated 

brain connections can be informative for identification of 

compensatory neuronal pathways and the mechanism of brain 

networks’ resilience to AD. We find significantly anti-

correlated connections in a public diffusion-MRI database, 

and then validate the results on other databases. 

 

Index Terms—Alzheimer’s disease, brain connectivity, 

diffusion MRI, compensatory pathways, anti-correlation. 

 

1. INTRODUCTION 

 

Debilitating neurodegenerative diseases such as Alzheimer’s 

disease (AD) affect not only individual brain regions, but also 

connectivity between them [1]. The complex structural and 

functional brain networks through which information flows – 

i.e., the human connectome – can be mapped by means of 

noninvasive diffusion-weighted magnetic resonance imaging 

(dMRI) and resting-state functional MRI (rs-fMRI), 

respectively. Such a map can help to better understand the 

vulnerability and resilience of these networks to disease 

effects, potentially leading to the discovery of diagnostically 

and therapeutically important imaging biomarkers. 

Connectivity attenuation in AD patients is often 

accompanied by brain reorganization and plasticity [2, 3]. 

Early in the disease, connectivity within some (e.g., frontal) 

brain regions increases – possibly due to a compensatory 

reallocation of cognitive resources – but eventually declines 

as the disease progresses [4-6]. This transient resiliency of the 

brain networks has been argued to help preserve some 

memory and attention ability in early AD [7]. In fact, the 

variability in performance of AD patients with the same 

pathological burdens [8] may be due to the high level of 

performance maintained [9] through adaptive recruitment of 

atypical brain pathways. Amplified by factors such as more 

years of education [10], compensatory mechanisms in the 

connectome have been speculated to mitigate cognitive 

decline and therefore contribute to cognitive reserve [7]. 

At the level of the synapses [11], a transient rise in 

presynaptic proteins and markers [12] and in synaptic size (to 

preserve synaptic density) [13] during neurodegeneration 

marks the brain’s reorganization at early stages of AD, which 

is, however, disrupted at the later stages compared to healthy 

aging [14]. Regional compensatory synaptic mechanisms 

might correspond to higher brain activity [15]. Examples are: 

increased frontal activation in AD [16, 17]; increased 

hippocampal activation in elderly cognitively normal (CN) 

subjects with tau tangle accumulation [18] or cortical 

thinning [19] and in mild cognitive impairment (MCI) 

patients with positive amyloid beta (Aβ) plaques [20]; and 

increased functional connectivity within the medial temporal 

lobe in MCI [21-23], within the default mode network 

(DMN) in healthy APOE carriers [24], and in the medial 

prefrontal cortex in Aβ-positive elderly CN subjects [25]. 

Furthermore, structural enhancements such as higher 

diffusion fractional anisotropy (FA) [26-28] and increased 

cortical thickness and caudal volume [29] in populations at 

risk of AD and MCI subjects have been observed. 

Reorganization of the brain networks in AD not only can 

serve as a potential early AD biomarker, but provides hope 

for rehabilitation [30]. Compensatory enhancement in 

connectivity is important to identify, since on the one hand it 

is useful for differential diagnosis, such as distinguishing 

behavioral variant frontotemporal dementia (bvFTD) from 

AD [31], and on the other hand it can complicate the 

relationship between brain pathology and functional 

measures when present along with degeneration in prodromal 

AD [11]. Moreover, the high metabolic activity resulting 

from the compensatory strategy of hyperactivation may 

eventually be deleterious for cognitive performance and 

accelerate pathology [32, 33]. 

While local brain connectivity decreases in AD, global 

connectivity has been seen to remain initially stable [34]. This 

suggests that affected cognitive processes may be relying on 

alternative brain networks for compensation, facilitated by 

the brain’s plasticity [35]. Although hyper-connectivity in a 

network is often accompanied by connectivity disruption 

within a reciprocal network, most existing studies monitor 
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compensatory effects in a network with respect to the 

progression of dementia, but few do with respect to the 

deterioration of other networks. As an example of the latter, 

AD patients have been shown to rely on increased frontal 

connectivity to compensate for reduced temporal 

connectivity [36, 37]. Moreover, AD has been shown to 

reduce connectivity in DMN but intensify it at the early stages 

in the salience network – a collection of regions active in 

response to emotionally significant stimuli – whereas bvFTD 

has been shown to attenuate the salience network 

connectivity but enhance the DMN connectivity [5, 31]. 

Inverse relationship has been observed between the 

connectivity strengths of these two neural systems across 

dementia populations (in addition to their rs-fMRI signal anti-

correlation) [31]. Nonetheless, we are not aware of an 

exploratory study to discover pairs of anti-correlated brain 

connections, in each of which one connection is significantly 

stronger across the population only if the other is weaker. 

In this work, we attempt to identify potentially 

compensatory enhancement of structural connectivity in AD 

via the negative (cross-subject) interrelationships among 

brain connections. As opposed to focusing only on the 

relationship between connectivity and the clinical data, we 

identify pairs of connections that are significantly negatively 

correlated with each other, and evaluate replicability on 

external datasets. Our underlying hypothesis is that such a 

connection-wise correlation approach can help to reveal 

pathways that are potentially compensatory and define the 

resilience mechanism of brain networks against AD. To that 

end, we apply our previously validated conductance-based 

model of structural connectivity [38, 39] – that accounts for 

multi-synaptic connections – to three public dMRI databases: 

• the second phase of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI-2) [40], 

• the third release in the Open Access Series of 

Imaging Studies (OASIS-3) [41], and 

• the WashU-UMN Human Connectome Project 

(HCP) [42]. 

In the following, we describe the proposed method in 

detail (Section 2), present (Section 3) and discuss (Section 4) 

experimental results, and conclude the paper (Section 5). 

 

2. METHODS 

 

2.1. Data Processing 

 

We apply our conductance-based connectivity computation 

method [38] (www.nitrc.org/projects/conductance) on dMRI 

data to compute the connectivity among 𝑁 =  86 FreeSurfer-

segmented [43] subcortical and cortical regions of interest 

(ROIs) from 213 CN, MCI and AD subjects of ADNI-2, 270 

CN, MCI and AD subjects from OASIS-3 (its largest subset 

of subjects sharing identical scan description), and 100 young 

adult subjects from HCP, resulting in a symmetric 𝑁 × 𝑁 

connectivity matrix for each subject. We also include 

functional correlation matrices from HCP, which have 

previously been generated [38, 42] from four stacked sessions 

of rs-fMRI. 

 

2.2. Identification of Anti-Correlated Connections 

 

We first vectorize the lower triangular part of each matrix to 

a vector of length 𝑁(𝑁 − 1) 2⁄ , and reduce this vector to keep 

𝑀 cortico-cortical and cortico-subcortical connections. We 

then compute the cross-subject linear correlation coefficient 

between each pair of connections, resulting in two symmetric 

𝑀 × 𝑀 connection-wise matrices of correlations, 𝑅, and 

p-values, 𝑃. We then keep only the connection pairs with a 

correlation value smaller than a negative threshold, e.g. −0.1, 

as ℛ− ≔ {(𝑖, 𝑗)|𝑅𝑖,𝑗 < −0.1}. From that set, we consider the 

pairs whose p-values survive a cutoff threshold, namely 𝛼 =

0.05, as 𝒮 ≔ {(𝑖, 𝑗) ∈ ℛ− |𝑃𝑖,𝑗
∗ < 𝛼}. 𝑃∗ is the set of p-values 

corrected for multiple comparisons among the elements of 

ℛ− with the Holm-Bonferroni method. We regard the 

surviving set 𝒮 as the pairs of connections with significant 

cross-subject anti-correlation. We keep either the entire 𝒮, or 

reduce it to a most significant subset of it. 

Next, to externally test if the surviving set 𝒮 is anti-

correlated, we compute 𝑅test and 𝑃test for the connection 

pairs in 𝒮 in a different population, and verify both 𝑅test < 0 

and 𝑃test
∗ < 𝛼 for that set, with 𝑃test

∗  being 𝑃test corrected for 

multiple comparisons among the pairs in 𝒮. We will also test 

the hypothesis that the surviving pairs of connections are left-

right symmetric; i.e., whether a significant anti-correlation is 

also a significant anti-correlation in the mirrored hemisphere. 

Lastly, we correlate the identified connections with 

cognitive performance measures, such as the Clinical 

Dementia Rating (CDR) and the Mini‐Mental State 

Examination (MMSE) score. 

 

3. EXPERIMENTAL RESULTS 

 

3.1. Anti-Correlated Connections 

 

For ADNI-2, we computed the cross-subject linear 

correlation coefficient between all pairs of structural 

connections, keeping |ℛ−| = 1978 pairs for which 𝑟 ≔
𝑅𝑖,𝑗 < −0.1. From those, the correlation between the left 

cortico-subcortical insula-caudate connection and the left 

cortico-cortical precentral-entorhinal connection (Figure 1, 

top, left) was most significant (p = 3×10-6, pBonferroni = 0.006) 

with r = -0.31 and the robust (bisquare) fit slope m = -0.40. 

(The top 20 significant pairs in 𝒮 all involved the insula-

caudate connection.) The correlation coefficients (r) and the 

p-values were computed using the corr function of Matlab. 

We then tested whether the same two connections were 

inversely correlated also in the right hemisphere, which was 

true with high significance (r = -0.15, p = 0.03, m = -0.24; 

Figure 1, top, right). Since here we tested a specific pair of 

connections in the right hemisphere, correction for multiple 

comparisons was not needed. 
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Next, for external validation and replication, we tested 

the hypothesis that the pair of insula-caudate and precentral-

entorhinal connections are negatively correlated, this time in 

the OASIS-3 database. This hypothesis was validated with 

this new dataset in both the left (r = -0.26, p = 2×10-5, 

m = -0.48) and the right (r = -0.23, p = 0.0002, m = -0.28) 

hemispheres (Figure 1, bottom). 

We then computed the correlation with the CDR and the 

MMSE score in the OASIS-3 database. While the CDR was 

negatively correlated with mean connectivity (r = -0.22, 

p = 0.0002), it was positively correlated with the caudate-

insula connection in the left (r = 0.19, p = 0.001) and right 

(r = 0.22, p = 0.0002) hemispheres. Likewise, whereas the 

MMSE score was positively correlated with mean 

connectivity (r = 0.19, p = 0.001), it was negatively 

correlated with the caudate-insula connection in the left 

(r = -0.12, p = 0.046) and right (r = -0.12, p = 0.041) 

hemispheres.  

 

3.2. Null Results 

 

In contrast, we did not observe any negative correlation 

between the insula-caudate and precentral-entorhinal 

connections across the young-adult HCP subjects, either in 

structural or functional connectivity. 

By reversing the order of ADNI-2 and OASIS-3 

databases in this experiment, the most significantly anti-

correlated pair found in OASIS-3 was not negatively 

correlated in ADNI-2. In addition, the anti-correlation 

between the insula-caudate and precentral-entorhinal 

connections was not observed in OASIS-3 when we included 

most (740) OASIS-3 subjects, which had heterogeneous scan 

descriptions (as opposed to our subset of 270 subjects with 

identical scan descriptions). 

 

4. DISCUSSION 

 

Increased FA in the left caudate, which could cause the 

connectivity quantification algorithm to output an elevated 

caudal structural connectivity, has been reported in 

pre-symptomatic familial AD subjects [26]. This is consistent 

with our findings, especially given the more significant anti-

correlation in the left hemisphere. Increases in structural 

connectivity in the right insula [44] and in functional 

connectivity between the frontal lobe and the corpus striatum 

[36] in AD have also been reported. Our conductance method 

[38] quantifies structural connectivity between a pair of 

regions as the total connectivity through all paths between the 

pair. Caudate-insula connectivity thus includes indirect paths 

passing through, e.g., thalamus or putamen, both of which 

 
Figure 1.  Negative correlation between the insula-caudate and the precentral-entorhinal structural connections in 
the left and right hemispheres, across the ADNI-2 (top) and OASIS-3 (bottom) populations. 
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have been shown to have enhanced structural connectivity in 

AD [26, 44]. Furthermore, the fact that such a negative 

correlation was observed consistently in older adults and 

those on the dementia spectrum (ADNI-2 and OASIS-3), but 

not in young healthy adults (HCP), suggests that this 

significant anti-correlation might be due to progression of 

dementia and/or aging, and possibly a compensatory effect. 

Including all OASIS-3 subjects (as opposed to only the 

subset with homogeneous scans) did not externally validate 

the hypothesis generated from ADNI-2, possibly because the 

various acquisition parameters created a large variance in the 

data that dominated the putative compensatory effects. 

It is important to note that an increase in the measured 

structural connectivity could stem from factors other than an 

actual strengthening of the tract. White-matter atrophy, 

volume reduction [45], and other geometrical variabilities 

could make ROIs closer to each other, leading to elevated 

measured structural connectivity. Additionally, in regions 

with fiber crossing, selective axonal loss can lead to an 

increase in FA and subsequently overestimation of structural 

connectivity [26-28]. Similarly, functional connectivity 

enhancement in preclinical AD might be attributed to factors 

other than compensation; for instance, excitotoxicity related 

to Aβ pathology early in AD [25, 46] and disruptions in 

reciprocal inhibition in anti-correlated networks [17, 47, 48] 

can possibly explain aberrant hyper-connectivity. 

Future work will consist of studying the relationship 

between the identified connections and cognitive 

performance on longitudinal data to elucidate whether 

compensation is at work. For instance, if intensified salience 

network connectivity in early AD is associated with 

preserved episodic memory, it may imply that this network 

enhancement provides compensation [47]; otherwise, it may 

indicate a disinhibition [49] and consequently over-

sensitization of the network (especially if accompanied with 

anxiety and agitation) [31]. 

 

5. CONCLUSIONS 

 

We have correlated brain connections with each other across 

Alzheimer’s disease and healthy populations and discovered 

significantly anti-correlated structural connections. Future 

work consists of using longitudinal data to further test the 

hypothesis that such connections are indeed compensatory. 
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