I am an academic with a focus on medical image computing in general, and neuroimage analysis in particular.
Together with my students I develop computational models and methods to extract relevant information from medical images.
We are particularly interested in methods that extrapolate to clinical settings, i.e., that can handle pathologies and that work out-of-the-box on data acquired with different scanning hardware, software and protocols. Many of the methods we develop are included in the open-source neuroimage analysis software suite FreeSurfer.
Many of the methods we develop are distributed through the open-source software suite
|
New:
Accurate and Explainable Image-based Prediction Using a Lightweight Generative Model
C. Mauri, S. Cerri, O. Puonti, M. Muehlau, and K. Van Leemput
MICCAI 2022 (oral)
|
|
A Contrast-Adaptive Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
S. Cerri, O. Puonti, D.S. Meier, J. Wuerfel, M. Muehlau, H.R. Siebner, K. Van Leemput
NeuroImage
vol. 225, 117471, 2021
|
|
Fast Nonparametric Mutual-Information-based Registration and Uncertainty Estimation
M. Agn and K. Van Leemput
MICCAI2019 UNSURE workshop,
Lecture Notes in Computer Science, vol. 11840, pp. 42-51, 2019
|
|
A Modality-Adaptive Method for Segmenting Brain Tumors and Organs-at-Risk in Radiation Therapy Planning
M. Agn, P.M. af Rosenschold, O. Puonti, M.J. Lundemann, L. Mancini, A. Papadaki, S. Thust, J. Ashburner, I. Law, K. Van Leemput
Medical Image Analysis,
vol. 54, pp. 220-237, 2019
|
|
Fast and Sequence-Adaptive Whole-Brain Segmentation Using Parametric Bayesian Modeling
O. Puonti, J. E. Iglesias, K. Van Leemput
NeuroImage, vol. 143, pp. 235-249, 2016
|
|
A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI
J.E. Iglesias, J.C. Augustinack, K. Nguyen, C.M. Player, A. Player, M. Wright, N. Roy, M.P. Frosch, A.C. McKee, L.L. Wald, B. Fischl, and K. Van Leemput
NeuroImage, vol. 115, pp. 117-137, 2015
|
|
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
B. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, [...], M. Prastawa, M. Reyes, K. Van Leemput
IEEE Transactions on Medical Imaging, vol. 34, no. 10, pp. 1993-2024, 2015
|
|
A Cautionary Analysis of STAPLE Using Direct Inference of Segmentation Truth
K. Van Leemput and M.R. Sabuncu
MICCAI2014, Lecture Notes in Computer Science, vol. 8673, pp. 398-406, 2014
|
|
N3 Bias Field Correction Explained as a Bayesian Modeling Method
C.T. Larsen, J.E. Iglesias, and K. Van Leemput
MICCAI2014 BAMBI Workshop, Lecture Notes in Computer Science, vol. 8677, pp. 1-12, 2014
|
|
Improved Inference in Bayesian Segmentation Using Monte Carlo Sampling: Application to Hippocampal Subfield Volumetry
J. E. Iglesias, M. R. Sabuncu, K. Van Leemput
Medical Image Analysis, vol. 17, no. 8, pp. 1181-1191, 2013
|
|
The Relevance Voxel Machine (RVoxM): A Self-tuning Bayesian Model for Informative Image-based Prediction
M.R. Sabuncu and K. Van Leemput
IEEE Transactions on Medical Imaging, vol. 31, no. 12, pp. 2290-2306, December 2012
|
|
Encoding Probabilistic Brain Atlases Using Bayesian Inference
K. Van Leemput
IEEE Transactions on Medical Imaging, vol. 28, no. 6, pp. 822-837, June 2009
|
|
A Unifying Framework for Partial Volume Segmentation of Brain MR Images
K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens
IEEE Transactions on Medical Imaging, vol. 22, no. 1, pp. 105-119, January 2003
java applet (with source code)
|
|
Automated Segmentation of Multiple Sclerosis Lesions by Model Outlier Detection
K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, P. Suetens
IEEE Transactions on Medical Imaging, vol. 20, no. 8, pp. 677-688, August 2001
|
|
Automated Model-Based Tissue Classification of MR Images of the Brain
K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens
IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 897-908, October 1999
|
|
Automated Model-Based Bias Field Correction of MR Images of the Brain
K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens
IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 885-896, October 1999
|