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Abstract
Background and Objectives
β-amyloid (Aβ) staging models assume a single spatial-temporal progression of amyloid ac-
cumulation. We assessed evidence for Aβ accumulation subtypes by applying the data-driven
Subtype and Stage Inference (SuStaIn) model to amyloid-PET data.

Methods
Amyloid-PET data of 3,010 participants were pooled from 6 cohorts (ALFA+, EMIF-AD, ABIDE,
OASIS, and ADNI). Standardized uptake value ratios were calculated for 17 regions. We applied the
SuStaIn algorithm to identify consistent subtypes in the pooled dataset based on the cross-validation
information criterion and the most probable subtype/stage classification per scan. The effects of de-
mographics and risk factors on subtype assignment were assessed using multinomial logistic regression.

Results
Participants weremostly cognitively unimpaired (n = 1890 [62.8%]), had amean age of 68.72 (SD
9.1) years, 42.1%wereAPOE e4 carriers, and 51.8%were female. A 1-subtypemodel recovered the
traditional amyloid accumulation trajectory, but SuStaIn identified 3 optimal subtypes, referred to
as frontal, parietal, and occipital based on the first regions to show abnormality. Of the 788 (26.2%)
with strong subtype assignment (>50% probability), the majority was assigned to frontal (n = 415
[52.5%]), followed by parietal (n = 199 [25.3%]) and occipital subtypes (n = 175 [22.2%]).
Significant differences across subtypes included distinct proportions of APOE e4 carriers (frontal
61.8%, parietal 57.1%, occipital 49.4%), participants with dementia (frontal 19.7%, parietal 19.1%,
occipital 31.0%), and lower age for the parietal subtype (frontal/occipital 72.1 years, parietal 69.3
years). Higher amyloid (Centiloid) and CSF p-tau burden was observed for the frontal subtype;
parietal and occipital subtypes did not differ. At follow-up, most participants (81.1%) maintained
baseline subtype assignment and 25.6% progressed to a later stage.

Discussion
Whereas a 1-trajectory model recovers the established pattern of amyloid accumulation,
SuStaIn determined that 3 subtypes were optimal, showing distinct associations with Alzheimer
disease risk factors. Further analyses to determine clinical utility are warranted.
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PET imaging is one of the main tools to study amyloid pa-
thology in vivo. The technique makes use of β-amyloid (Aβ)
radiotracers validated against neuropathology.1-3 In compar-
ison with other Aβ biomarkers, such as CSF or plasma, PET
imaging provides spatial-temporal information,4 which may
be of particular interest for Alzheimer disease (AD) research
and clinical trials.

Since the first proposal of a population-based neuropathologic
progression scheme by Braak and Braak in 1991,5 multiple
amyloid PET studies have proposed similar frameworks that
would allow the staging of an individual’s biomarker along a
spectrum of pathologic burden.6-9 These approaches have
demonstrated high applicability at the population level and in-
dicate that determining the extent of amyloid pathology can be
used to better characterize prognosis and risk of cognitive
decline.7-9 However, these models have invariably relied on the
assumption that the path to ADdementia–like levels of Aβ is the
same across individuals, disregarding variability in the data that
could point to distinct trajectories of amyloid accumulation. On
the other hand, most studies aimed at identifying disease sub-
types assume participants to be at a common disease stage (e.g.,
dementia) for valid comparison,10 which is especially challeng-
ing in a sporadic and long-term disease process such as AD.
Therefore, although both approaches are useful, stage-only
models do not disentangle potential subtypes, and subtype-only
models do not account for distinct stages across individuals,
hampering the identification of the simultaneous effect of sub-
types and stages on disease presentation and risk assessment.11

Recently, a data-driven method has been developed to jointly
resolve both stages and subtypes from heterogeneous cross-
sectional data, namely the Subtype and Stage Inference
(SuStaIn) model.11 This algorithm was applied previously to
uncover patterns of brain atrophy in AD, showing an im-
proved prediction of clinical conversion compared to stage- or
subtype-only models.11 More recent work identified 4 distinct
spatiotemporal phenotypes of tau accumulation, which were
associated with different clinical profiles and longitudinal
cognitive outcomes, suggesting the value of such models for
improving individualized prognosis and clinical care.13 In the
context of amyloid, previous descriptions of a homogeneous
spatial-temporal progression of amyloid pathology were not
in full agreement,4 and staging models’ success could be at-
tributed to a reduced spatial resolution (i.e., small number of

stages covering large portions of the brain).8,9 Therefore,
it is possible that an underlying heterogeneity in amyloid
spatial-temporal progression remains unresolved.

To determine whether there is evidence for patterns of ce-
rebral Aβ accumulation, we applied the SuStaIn model to
pooled amyloid-PET data from 5 cohorts. These included
observational cohorts and open-access data repositories with
mostly cognitively unimpaired individuals and clinical pop-
ulations with different levels of cognitive impairment. We first
assessed whether subtypes of progression are statistically
preferred to the common assumption of a universal trajectory.
We then described possible subtype differences with respect
to main demographics and risk factors. Finally, we validated
the observed subtypes in a longitudinal subset of data.

Methods
Cohorts
All participants from 5 cohorts with available amyloid PET
scans of sufficient quality for quantification were retrospec-
tively included (Table 1). [18F]Flutemetamol scans of 358
cognitively unimpaired (CU) participants from the Alz-
heimer’s and Family cohort of the Barcelonaβeta Brain Re-
search Center (ALFA)14 and 190 CU participants from the
InnovativeMedicine Initiative EuropeanMedical Information
Framework for AD (EMIF-AD)15 were included. [18F]Flor-
betaben scans of 350 memory clinic patients from the Alz-
heimer’s biomarkers in daily practice project (ABIDE) were
included.16 A total of 572 [11C]Pittsburgh compound B (PiB)
and 360 [18F]florbetapir scans of CU participants were
obtained from the Open Access Series of Imaging Studies–3
(OASIS) dataset.17 A total of 1,180 participants scanned with
[18F]florbetapir were included from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The ADNI study
was launched in 2003 as a public–private partnership, led by
principal investigator Michael W. Weiner, MD. The primary
goal of ADNI is to test whether serial MRI, PET, other bi-
ological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD.

In total, the complete dataset available for this study consisted
of amyloid PET imaging data from 3,010 participants (1890

Glossary
Aβ = β-amyloid; ABIDE = Alzheimer’s biomarkers in daily practice project; AD = Alzheimer disease; ADNI = Alzheimer’s
Disease Neuroimaging Initiative; ALFA = Alzheimer’s and Family cohort of the Barcelonaβeta Brain Research Center; CAA =
cerebral amyloid angiopathy; CL = Centiloid; CU = cognitively unimpaired; CVIC = cross-validation information criterion;
DLB = dementia with Lewy bodies; EMIF-AD = European Medical Information Framework for AD; MCI = mild cognitive
impairment;MLR = multinomial logistic regression;MMSE = Mini-Mental State Examination;MNI = Montreal Neurological
Institute;OASIS = Open Access Series of Imaging Studies; pi = postinjection; PiB = Pittsburgh compound B; ROI = region of
interest; SuStaIn = Subtype and Stage Inference; SUVR = standard uptake value ratio.
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Table 1 Baseline Demographics for Each Cohort

[18F]Flutemetamol [18F]Florbetaben [11C]PiB [18F]Florbetapir

Total
(n = 3,010)a

ALFA
(n =
358), CU

EMIF-AD
(n = 190),
CU

ABIDE (n = 350) OASIS (n = 572) OASIS (n = 360) ADNI (n = 1,180)

CU
(n = 126)

Cognitively
impaired
(n = 66)

Dementia
(n = 158)

CU
(n = 482)

Cognitively
impaired
(n = 32)

Dementia
(n = 58)

CU
(n = 304)

Cognitively
impaired
(n = 25)

Dementia
(n = 31)

Missing
(n = 27)

CU
(n = 430)

Cognitively
impaired
(n = 525)

Dementia
(n = 198)

Age, y 61.50
(4.64)

70.44 (7.55) 60.53
(7.80)

66.13 (7.09) 66.68
(7.34)

64.63
(9.32)

70.44 (8.35) 74.09
(8.21)

66.78
(8.51)

70.92 (6.30) 73.50
(6.84)

72.72
(9.84)

73.97
(6.78)

72.87 (7.96) 75.02
(7.75)

68.72 (9.06)

Sex, F 220
(61.5)

112 (58.9) 54 (42.9) 24 (36.4) 65 (41.1) 292 (60.6) 18 (56.3) 24 (41.4) 163 (53.6) 17 (68.0) 19 (61.3) 14 (51.9) 233
(54.2)

222 (42.3) 82 (41.4) 1,559 (51.8)

MMSE 29.18
(0.95)

28.99 (1.14) 27.77
(2.40)

26.94 (2.01) 23.12
(4.09)

29.13
(1.15)

27.97 (1.94) 23.77
(6.01)

29.04
(1.26)

28.56 (1.53) 24.45
(4.07)

26.00
(2.55)

29.06
(1.19)

28.02 (1.78) 22.49
(3.28)

27.88 (2.93)

APOE «4
carriership +b

198
(55.3)

62 (33.3) 49 (38.9) 31 (47.0) 83 (52.5) 161 (33.5) 15 (46.9) 35 (60.3) 101 (34.7) 7 (30.4) 23 (74.2) 8 (36.4) 124
(29.0)

241 (45.9) 129 (65.5) 1,267 (42.1)

APOE «2
carriership +c

31 (8.7) 17 (8.9) 15 (11.9) 9 (13.6) 12 (7.6) 81 (16.8) 4 (12.5) 6 (10.3) 52 (17.9) 3 (13.0) 2 (6.5) 1 (4.5) 57 (13.3) 52 (9.9) 8 (4.1) 350 (11.6)

Centiloid 2.76
(17.02)

14.58
(23.02)

13.00
(26.53)

28.35 (32.36) 45.51
(45.15)

11.77
(26.70)

36.75 (43.74) 72.14
(42.55)

18.77
(32.06)

47.02 (59.19) 75.70
(42.30)

39.71
(39.32)

17.79
(27.89)

33.45 (35.89) 60.43
(35.33)

24.24
(35.75)

Aβ positivityd 38 (10.6) 40 (21.1) 29 (23.0) 29 (43.9) 101 (63.9) 90 (18.7) 14 (43.8) 49 (84.5) 85 (28.0) 13 (52.0) 27 (87.1) 15 (55.6) 125
(29.1)

275 (52.4) 167 (84.3) 1,097 (36.4)

CSF Aβ42 1,309.38
(371.89)

892.28
(317.98)

1,078.08
(283.21)

906.45
(319.25)

745.72
(298.79)

NA NA NA 1,246.92
(433.15)

1,016.95
(431.53)

696.12
(338.48)

NA

CSF p-tau 16.44
(7.49)

76.34
(44.38)

53.98
(29.84)

65.75 (27.82) 70.90
(33.08)

NA NA NA 22.13
(9.35)

26.60 (14.32) 36.71
(16.37)

NA

CSF essay Elecsys Adx
Euroimmun

Innotest NA NA Elecsys

Abbreviations: Aβ = β-amyloid; ABIDE = Alzheimer’s biomarkers in daily practice project; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ALFA = Alzheimer’s and Family cohort of the Barcelonaβeta
Brain Research Center; CU = cognitively unimpaired, including both controls and subjective cognitive decliners; EMIF-AD = European Medical Information Framework for AD; MMSE = Mini-Mental State Examination; OASIS =
Open Access Series of Imaging Studies; PiB = Pittsburgh compound B.
Cognitively impaired participants had a clinical diagnosis ofmild cognitive impairment or a Clinical Dementia Rating of 0.5 (in the absence of a clinical diagnosis). Dementia includes both AD and non-AD. Values aremean (SD) or
n (%).
a 1890 CU, 648 cognitively impaired, 445 dementia, 27 missing.
b Participant carries at least 1 APOE e4 allele.
c Participant carries at least 1 APOE e2 allele.
d Aβ positivity = >21 Centiloid.
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CU, 648 cognitively impaired, 445 dementia, and 27 with
missing diagnosis at time of baseline PET). Participants la-
beled as cognitively impaired had a clinical diagnosis of MCI
or a Clinical Dementia Rating score of 0.5 in the absence of a
clinical diagnosis. In addition, from cohorts where longitudi-
nal PET imaging was available (ADNI and OASIS), we se-
lected those for whom a second scan was performed ≥4 years
after baseline (n = 519).

Standard Protocol Approvals, Registrations,
and Patient Consents
The protocol, patient information, consent form, and other
relevant study documentation were approved by the ethics
committees or institutional review boards of each site before
study initiation. The studies were performed in accordance
with the Declaration of Helsinki and consistent with Good
Clinical Practice. Before enrollment, all patients provided
written informed consent.

Image Acquisition and Processing
[18F]Flutemetamol scans from the ALFA cohort consisted of 4
frames (4 × 5 minutes) acquired 90–110 minutes postinjection
(pi). Images were checked for motion and PET and accom-
panying structural T1-weighted MRI were warped into Mon-
treal Neurological Institute (MNI) space using SPM12. [18F]
Flutemetamol EMIF-AD scans were acquired using a dual-
time-window protocol18 (0–30 minutes pi, 60 minutes break,
90–110 minutes pi), but only the late frames (90–110 minutes
pi) were used for this work.19 [18F]Florbetaben scans from
ABIDE were processed as described previously, with static
scans consisting of 4 frames (4 × 5 minutes) acquired 90–110
minutes pi.19 All EMIF-AD and ABIDE images were checked
for motion and accompanying structural T1-weighted mag-
netic resonance images were coregistered to PET using Vinci
software (Max Planck Institute for Neurologic Research) and
then warped into MNI using SPM12. [18F]Florbetapir (50–70
minutes pi) and [11C]PiB (30–60 minutes pi) data from the
OASIS platform were processed with FreeSurfer and the PET
Unified Pipeline.20 Finally, [18F]florbetapir PET scans from
ADNI consisted of 4 frames (4 × 5 minutes), acquired 50–70
minutes pi, and were processed using FreeSurfer.

PET Quantification
For all cohorts, standard uptake value ratios (SUVRs) relative
to the cerebellar gray matter were available for all Desikan-
Killiany atlas regions.21 For the purposes of this work, a set of
17 regions of interest (ROIs) was constructed by volume-
weighted averaging of anatomically adjacent regions. The final
17 regions were as follows: anterior, posterior, and isthmus
cingulate; medial and lateral orbitofrontal; precuneus; in-
ferior, middle, and superior frontal; supramarginal; insula and
lingual gyrus; the lateral parietal lobe (superior and inferior
parietal); lateral temporal lobe (middle, transverse, and su-
perior temporal, superior temporal sulcus, and temporal
pole); basal temporal lobe (fusiform and inferior temporal);
occipital lobe (lateral occipital, cuneus, and pericalcarine);
and striatum (caudate and putamen).

In order to pool regional data across cohorts and tracers,
SUVR values were standardized to z scores. The z scoring
transformation was cohort-, radiotracer-, and region-specific
and the reference groups consisted of CU participants of each
study. We applied Gaussian Mixture Modeling to the regional
data of each reference group to select the mean and SD of the
left (“normal”) Gaussian curve. These refined regional esti-
mates were then used for z scoring the regional SUVR values
(eFigure 1, links.lww.com/WNL/B861).

In addition, standardized quantification of global amyloid
burden was obtained using the Centiloid (CL) scale.22 PET
scans from the ALFA, EMIF-AD, and ABIDE studies were
processed by the Barcelonaβeta Brain Research Center
(BBRC) using a validated standard CL pipeline.23 CL values
were directly obtained from the OASIS-3 and ADNI data-
bases. As per standard guidelines, the reference region used
for CL was the whole cerebellum for all data.22

SuStaIn Model
In this work, the Mixture SuStaIn implementation in
PySuStaIn, cloned from the master branch on 30 October
2020, was used with Python 3.7. SuStaIn is a probabilistic
machine learning algorithm that can characterize the hetero-
geneity of disease by inferring both patterns of disease pro-
gression (subtypes) and an individual’s disease stage
(i.e., degree of progression within a subtype) from cross-
sectional data. The number of SuStaIn stages is defined by the
number of biomarkers (in our case, ROIs) provided to the
model. The model uses a data likelihood based on how far a
biomarker measurement deviates from normality to group
events based on their associated z score (e.g., 1, 2 , or 3 SDs
away from control population mean) for each biomarker.
However, in cases where the control population displays little
abnormality (such as the case in our work, where amyloid load
in the reference group will be low), the resulting z scores in
patients can become too large in comparison. Instead, it is
more sensible to use 2 distributions, one to describe the
control population and a separate one to describe patients’
measurements, therefore defining an event as a biomarker (in
our case, regional SUVR of the 17 predefined ROIs) going
from normal to abnormal (as in the event-based model12,24).

The SuStaIn model fitting consists of an iterative procedure
that simultaneously optimizes subtype event sequences and
subtype classification for a preselected number of subtypes.
Model out-of-sample likelihoods across 10 folds were used to
calculate the cross-validation information criterion (CVIC)
per model. The CVIC is a measure of how well the model fits
the test data, similar to the Akaike information criterion, but
with less penalty on model complexity.25 A complete math-
ematical description of the SuStaIn algorithm is available.11

The number of subtypes was iteratively increased, and the
model chosen for further analysis was selected based on the
CVIC. In particular, we repeated the cross-validation analysis
20 times to exclude spurious findings and picked the subtype
model such that the CVIC was lowest or, in cases where the
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CVIC was very similar, had the lower model complexity
(i.e., fewer subtypes).

Statistical Analyses
Statistical analyses were performed using Statistical Package
for the Social Sciences (SPSS) version 26 and significance was
set at p < 0.05.

Optimal Model Fit
The SuStaIn model was constructed based on the full baseline
dataset (n = 3,010) and the optimal number of subtypes was
tested by iteratively increasing the number of selected sub-
types until the lowest CVIC value was reached. In addition,
Spearman rank correlation analyses were used to assess the
agreement between the regional ordering of a 1-trajectory
model (i.e., 1 subtype, as per previously proposed staging
models) and that of each of the subtypes determined by the
optimal model. Rank correlations between subtypes were also
determined.

Subtype Analyses
Overall differences between subtypes were assessed in-
dependently of stage. First, participants classified as stage
0 were labeled as no subtype and excluded from analyses. For
participants assigned to stage ≥1, only those with a strong
probability (>50%) of assignment to a subtype were included.
A multinomial logistic regression (MLR) was used to de-
termine the effect of demographics and risk factors on subtype
assignment, such as age, cohort representation, male/female
proportion, APOE e4 and APOE e2 carriers, Mini-Mental
State Examination (MMSE) scores, and diagnostic groups.
Next, 2 separate MLRs were used to determine the relation-
ship between subtypes and biomarkers of AD pathology
(amyloid and p-tau), corrected for the variables above. In
addition to z-scored CSF p-tau, the first model included CL as
a marker for amyloid pathology, while the second model in-
cluded z-scored CSF Aβ42. CSF values were z scored based on
the mean and SD from the Gaussian mixture model–derived
normal curve of each cohort. CSF was available for 1,522
participants (ABIDE: 241 [15.8%], ADNI: 858 [56.4%],
ALFA+: 303 [19.9%], EMIF-AD: 120 [7.9%]).

Longitudinal Validation
The optimal SuStaIn model derived from the baseline data
was subsequently applied to the subset (n = 591) of available
longitudinal amyloid PET scans. Descriptive statistics were
used to determine subtype stability (proportion of partici-
pants classified as the same subtype at follow-up) and stage
progression (proportion of participants with lower, same, or
higher stage at follow-up). In addition, an MLR was used to
assess whether annualized rates of change in CLwere different
between subtypes, accounting for all significant covariates and
baseline amyloid burden.

Data Availability
The data that support the findings of this study can be made
available upon request from the study-specific principal

investigator (i.e., ABIDE, EMIF-AD, ALFA) or are openly
available (i.e., ADNI and OASIS open-source databases).

Results
Themain demographics are shown in Table 1. Across cohorts,
participants had a mean age of 68.72 ± 9.06 years and 51.8%
were female. Most participants were CU (n = 1890 [62.4%]),
MMSE score was 27.88 ± 2.93, and the proportion of APOE
e4 carriers was relatively high (42.1%).

Identified Subtypes of Amyloid Accumulation
The optimal model fit identified 3 different subtypes
according to the CVIC (eFigures 2 and 3, links.lww.com/
WNL/B861). The 3 subtypes are referred to as frontal, pa-
rietal, and occipital in the remainder of this study according to
the earliest regions to become abnormal in each of them.

In the frontal subtype, the first abnormalities in amyloid PET
signal were identified in the medial orbitofrontal region, pro-
gressing from the anterior to the posterior parts of the brain,
and culminating with the involvement of the striatum and the
occipital lobe. The parietal subtype also identified the striatum
and occipital lobe as the last to become abnormal; the first
regions to display abnormality were the posterior cingulate and
the precuneus, with the intermediate spatial-temporal pro-
gression evolving from posterior to anterior regions. The oc-
cipital subtype displayed an inverse overall ordering, beginning
in the occipital and temporal–parietal lobes, progressing to
frontal regions, and ending in the striatum (Figure 1A and
eFigure 4, links.lww.com/WNL/B861).

In comparison, the regional ordering from a 1-trajectory model
closely resembled previously proposed staging models, with a
medial frontal and precuneal start of amyloid accumulation,
expanding throughout the cortex, and ending with the occipital
cortex and striatum (Figure 1B). This regional ordering was
strongly and positively correlated with the regional ordering of
the frontal (ρ = 0.90, p < 0.001) and the parietal (ρ = 0.89, p <
0.001) subtypes, but not with the occipital subtype (ρ = −0.01,
p = 0.96; eFigure 5, links.lww.com/WNL/B861). When
comparing subtypes, the regional ordering of the frontal and
parietal was positively correlated (ρ = 0.74, p < 0.001), while
occipital subtype regional ordering did not significantly corre-
late with the frontal (ρ = −0.18, p = 0.50) or parietal subtypes
(ρ = −0.04, p = 0.88; eFigure 6).

Subtype Assignment
Across the complete baseline dataset (n = 3,010), themajority of
scans either showed fully normal (stage 0: n = 1810 [60.1%]) or
widespread abnormal (stage 17: n = 282 [9.4%]) Aβ levels
across all brain regions, which challenged accurate subtype as-
signment (Figure 2). Therefore, only cases with a strong subtype
assignment probability (>50% probability) across stages higher
than 0 were selected for subsequent subtype analyses (n = 788
[26.2%]). Within the 788 participants with strong subtype

e1696 Neurology | Volume 98, Number 17 | April 26, 2022 Neurology.org/N

http://links.lww.com/WNL/B861
http://links.lww.com/WNL/B861
http://links.lww.com/WNL/B861
http://links.lww.com/WNL/B861
http://neurology.org/n


assignment, the majority (n = 415 [52.5%]) was assigned to the
frontal, followed by the parietal (n = 199 [25.3%]) and occipital
subtypes (n = 175 [22.2%]). This distribution was present
within each cohort, with the exception of ABIDE (n = 101),
where the majority of participants (n = 46 [45.5%]) were
assigned to the parietal subtype instead (χ2 = 70.31, p < 0.001;
Figure 3A and eTable 1, links.lww.com/WNL/B861).

Subtype Differences
Demographics per subtype can be found in Table 2. The male/
female proportion was similar between subtypes. Participants

assigned to the parietal subtype were younger compared to the
frontal (β = 0.05, p < 0.001) and occipital (β = 0.04, p = 0.005).
MMSE scores did not differ between subtypes, but diagnostic
groups were differentially represented, with occipital displaying
a higher proportion of participants with dementia than the
other two (vs frontal: β = 0.84, p < 0.001; vs parietal: β = 0.63, p
= 0.02; Figure 3B). The proportion of carriers across subtypes
was similar for the e2 allele (6.6%–7.9%), while e4 carriership
differed, with the highest percentage of APOE e4 carriers ob-
served in the frontal subtype (vs parietal: β = −0.43, p = 0.02; vs
occipital: β = −0.79, p < 0.001; Figure 3C).

Figure 1 Representation of the 3 Subtypes

(A) Representation of the final 3 subtypes as identified by Subtype and Stage Inference (SuStaIn), referred to as frontal (top row), parietal (middle row), and
occipital (bottom row), in accordance with the earliest regions to become abnormal. (B) The same representation for a 1-trajectory model across the dataset,
which was not preferred against the 3-subtype model.
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With respect to the biomarkers of AD pathology, MLR
analyses (n = 430) corrected for the variables above showed
significantly higher amyloid burden as expressed in CL levels
for the frontal subtype compared to the parietal (β = −0.02, p
= 0.002) and occipital (β = −0.01, p = 0.02), but no differences
for CSF Aβ42 (Figure 3, D and E). CSF p-tau levels were also
significantly higher for the frontal subtype compared to pa-
rietal (CL model: β = −0.19, p = 0.006; CSF Aβ42 model: β =
−0.25, p < 0.001) and occipital (CL model: β = −0.10, p =
0.11; CSF Aβ42 model: β = −0.14, p = 0.03); parietal and
occipital did not differ (Figure 3F).

Longitudinal Validation
A total of 519 (ADNI, n = 376 [72.4%]; OASIS, n = 143
[27.6%]) participants had available longitudinal amyloid PET
at least 4 years after baseline available (mean 5.5 ± 1.2 years
[4.0–9.6]). Mean follow-up time was longer for OASIS (mean
6.2 ± 1.4 years [4.0–9.6]) compared to ADNI (mean 5.2 ± 1.0
years [4.0–9.4], F = 71.0, p < 0.001). Participants with lon-
gitudinal PET data had highly similar demographics com-
pared to the full cohort, with most participants CU at baseline
(n = 320 [61.7%]), mean MMSE score 28.72 (SD 1.61),
average age 70.0 years (SD 9.01), and 51.3% female.

The longitudinal validation was performed across the entire
sample (even if the baseline probability of subtype assignment
was lower than 50%). In the complete longitudinal sample,
the majority of participants were assigned to “no subtype”
(i.e., stage 0) at baseline (n = 381 [73.4%]), followed by
frontal subtype (n = 86 [16.6%]), parietal (n = 47 [9.1%]),
and occipital (n = 5 [1.0%]).

Subtype Stability
In the entire longitudinal sample, 421 (81.1%) participants
were stable in subtype assignment; 322 remained stage 0,

(i.e., “no subtype”) 65 from the frontal, and 34 from the
parietal subtype. In contrast, 98 (18.9%) participants changed
subtype assignment at follow-up (“no subtype,” 59; frontal,
21; parietal, 13; and occipital, 5 at baseline). From those,
frontal mostly changed to parietal and vice-versa (F→P:
76.2% [n = 16] and F→0: 23.8% [n = 5]; P→F: 76.9% [n =
10] and P→O: 7.7% [n = 1]), while all occipital participants
(n = 4) changed subtype, mostly to parietal (O→F: 20.0% [n
= 1] and O→P: 60.0% [n = 3]; Figure 4A). The most com-
mon change in subtype occurred in participants who started in
stage 0 (0→F: 66.1% [n = 39], 0→P: 30.5% [n = 18], 0→O:
3.4% [n = 2]; Figure 4B).

Amyloid Accumulation
When we evaluated staging, we found that 69.0% (n = 358)
remained stable, 25.6% (n = 133) progressed to later stages,
and 5.4% (n = 28) of participants regressed in stage at follow-
up. This was independent of subtype stability. These changes in
stage can also be observed using the CL scale (Figure 4C).
Yearly rates of change in CL were different between partici-
pants assigned to 1 of the 3 subtypes or “no subtype” at
baseline, even after accounting for syndromic diagnosis, cohort,
APOE e4 carriership, and baseline amyloid burden. More
specifically, the longitudinal rates of change were lower for no
subtype (vs frontal: β = 4.09, p < 0.001; vs parietal: β = 4.23, p <
0.001; vs occipital: β = 2.84, p = 0.004) and slightly higher for
occipital subtype (vs frontal: β = −0.08, p < 0.001; vs parietal: β
= −0.07, p = 0.03; vs no subtype: β = −0.35, p < 0.001), but did
not differ between the frontal and parietal subtypes.

Discussion
In this work, applying the SuStaIn model to a pooled dataset
of >3000 PET scans provided support for the existence of 3

Figure 2 Subtype Assignment Probability Against Assigned Stage

Boxplots show the relationship between
stage assignment on the x-axis against
the probability of subtype assignment on
the y-axis for the whole baseline dataset.
The solid line represents the cutoff for
high probability, i.e., >50%. It can be ap-
preciated that subtype assignment prob-
ability is lowest for those participants in
stage 0 or 17, who present little least
spatiotemporal information. Also, the
highest probability assignment is ob-
served for those participants around 7,
where the subtypes are most different
from each other.
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subtypes of topographic cortical amyloid accumulation, in
contrast to the traditional assumption of single-trajectory
models reported previously.4,6,8,9 The 3 subtypes are referred
to as frontal, parietal, and occipital based on the earliest re-
gions to show abnormality. Of these, the frontal subtype was
most prevalent in our sample and was associated with a higher
proportion of APOE e4 carriership and higher amyloid and
tau burden, whereas the parietal subtype was associated with
younger age. The occipital subtype showed a higher pro-
portion of patients with dementia.

Previous models of amyloid accumulation in AD were based
on the assumption of a universal trajectory of disease pro-
gression, consistently implicating the medial cortical re-
gions early in the process of Aβ accumulation, followed by

cortical association areas, and finally the late involvement of
occipital and striatal regions.6-9 This population-level or-
dering was also identified by SuStaIn when the model was
set to recover one trajectory, which seems to correspond to an
average of the most common frontal and parietal subtypes
(eFigure 2, links.lww.com/WNL/B861). We now extend on
former studies, as SuStaIn was able to further resolve subtype-
specific initial stages, identifying the orbitofrontal cortex and
precuneus regions as the starting point of distinct subtypes. We
observed that the concomitant abnormality in those regions
corresponded to an intermediate SuStaIn stage shared between
the frontal and parietal subtypes instead (i.e., ;stage 8,
Figure 1). The precuneus seems more strongly implicated in
patients with early-onset AD.26 The parietal subtype was more
often observed in the ABIDE clinical cohort from the Alzheimer

Figure 3 Cross-sectional Relationships

For the 788 participants with a strong subtype assignment (>50% probability) at baseline, differences in subtypes are shown for (A) cohort and tracer
representation, (B) diagnostic groups, (C) APOE e4 carriership, (D) amyloid burden expressed in Centiloid units, (E) amyloid burden in CSF Aβ42, and (F) CSF p-
tau. Demographics and risk factors (A–C) were significantly different between the 3 subtypes. (D, F) The frontal subtype was associated with higher Centiloid
and CSF p-tau values, although (E) no differences were observed for CSF Aβ42 between subtypes. ABIDE = Alzheimer’s biomarkers in daily practice project;
ADNI = Alzheimer’s Disease Neuroimaging Initiative; ALFA = Alzheimer’s and Family cohort of the Barcelonaβeta Brain Research Center; EMIF-AD = European
Medical Information Framework for AD; FBB = [18F]florbetaben; FBP = [18F]florbetapir; FMM = [18F]flutemetamol; OASIS = Open Access Series of Imaging
Studies; PiB = Pittsburgh compound B.
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Center Amsterdam, a tertiary referral center specialized in de-
mentia at a young age.16,27

In the absence of neuropathologic confirmation, it is impor-
tant to note that recent work on regional visual assessment of
[18F]flutemetamol PET images supports these results.28 The
expert visual assessment of almost 500 amyloid-PET images
showed both the traditional joint and early involvement of the
medial orbitofrontal cortex and precuneus, as well as a non-
negligible proportion of CU participants displaying isolated
amyloid burden, specifically in one of these regions.28 The
occipital lobe is not part of the visual read guidelines of am-
yloid PET images,28 limiting the available information on the
incidence of occipital uptake. Nonetheless, a subset of par-
ticipants in this previous report did show a relatively early
involvement of temporal regions, especially together with

parietal ones—a pattern that could reflect the first half of the
occipital subtype progression (up to ;stage 9, Figure 1).

The identification of the occipital subtype by SuStaIn is re-
markably distinct from traditional reports of early amyloid
deposition in AD. In fact, the occipital lobe is commonly
assumed to only harbor amyloid pathology towards the end of
the disease process.6,8,9 Nonetheless, posterior or occipital
uptake is often attributed to cerebral amyloid angiopathy
(CAA), which most commonly affects this region and is a
known risk factor for AD.29 Under this hypothesis, the as-
signment of participants to the occipital subtype could suggest
the identification of CAA as cerebral Aβ accumulation by
SuStaIn. Nonetheless, there is neuropathologic support for an
alternative hypothesis, i.e., that the occipital signal actually
reflects cortical amyloid pathology. More specifically, Braak

Figure 4 Longitudinal Validation

(A) Subtype assignment at baseline vs at follow-up. Spaghetti plots illustrate the change in (B) stage and (C) Centiloid units per subtype as assigned at baseline.
Lines are color coded to show changes in subtype assignment at follow-up. Overall, changes in stage are associated with changes in Centiloid and yearly rates
of change were lowest for the frontal subtype.
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and Braak5 described basal occipital uptake as part of the first
neuropathologic stage in AD. Also, (posterior) amyloid bur-
den is observed in approximately 50% of patients with de-
mentia with Lewy bodies (DLB), which is suggested to reflect
AD copathology and is associated with a worse prognosis.30 A
post hoc analysis of subtype classification in specifically the
clinical ABIDE cohort provides further support of this ob-
servation, as the occipital subtype was overrepresented in the
DLB patient population (eFigure 7, links.lww.com/WNL/
B861). To further determine the underlying pathology of this
subtype, its relationship to (occipital) microbleeds (a symp-
tom of CAA29) and different etiologies in patients with
non-AD dementia should be investigated. Still, this over-
representation of participants with dementia in the occipital
subtype indicates that early amyloid-PET signal in the oc-
cipital lobe may harbor relevant prognostic information. As
such, future AD research should consider the assessment of
occipital regions, and future visual read guidelines could
consider including the occipital lobe for the assessment of
amyloid PET scans should these findings be confirmed.

Overall, subtype assignment might have the highest utility in
the predementia stages of AD, considering the main differ-
ences between the trajectories are apparent at the beginning
of the process. Indeed, the highest probability of subtype
assignment was observed in individuals at the early to in-
termediate stages of amyloid-PET abnormality (stages 6–7),
while higher stages resulted in lower probability of assignment
as subtypes merge into similar trajectories (Figure 2).
Nonetheless, the earliest regions of each subtype still display
higher amyloid at the late stages, indicating that subtypes can
still be identified even beyond the amyloid saturation point.
While this suggests that the subtypes are not merely ephem-
eral states, an important question is whether they have

prognostic value, both in terms of differences in speed of
amyloid accumulation as well as in terms of risk or speed of
subsequent pathologic progress and cognitive decline. Re-
garding the former, our longitudinal analyses already suggest
the frontal subtype to have lower amyloid accumulation rates
compared to the other groups. However, these results must be
interpreted with caution, as the sample sizes of both parietal
and occipital subtypes were too small. Another possible effect
of amyloid subtypes could be related to subsequent tau
spread. Whereas previous literature suggests tau spread be-
yond the medial temporal lobe to only occur after sufficient
amyloid deposition, it remains unclear whether and how the
spatial distribution of amyloid further influences this event. In
addition, recent work identified 4 subtypes of tau accumula-
tion, further suggesting a possible interaction between amy-
loid and tau spatial-temporal trajectories.13 In terms of
cognition, the different proportions of clinical diagnostic
groups (i.e., CU, cognitively impaired, and dementia) already
indicate worse prognosis for the occipital subtype. Nonethe-
less, clinical diagnosis is a relatively crude measure for overall
cognitive performance, and further exploration of the severity
and type of cognitive symptoms associated with each of the
subtypes will be necessary to determine their clinical relevance.
In addition, previous work has shown that the extent of amyloid
burden as measured in CL units predicts the risk of global
cognitive decline.31 Future work should investigate whether
additional information on amyloid accumulation subtype fur-
ther improves risk stratification.

There are some methodologic limitations to consider when
interpreting the results of this work. First, while SuStaIn uses a
cross-validation framework and the results are bootstrapped,
one could argue we should have used a separate training and
test set to validate the results. We opted not to do this because

Table 2 Baseline Demographics for Each Subtype

Frontal (n = 414)a Parietal (n = 199)b Occipital (n = 175)c

Age, y 72.12 (8.14) 69.26 (9.61) 72.13 (8.07)

Sex, F 196 (47.3) 97 (43.7) 85 (48.6)

MMSE 27.35 (3.19) 27.40 (2.56) 26.56 (3.50)

APOE «4 carriership+d 264 (64.2) 113 (57.7) 86 (49.4)

APOE «2 carriership+e 31 (7.5) 13 (6.6) 12 (6.9)

Centiloid 50.73 (27.52) 36.71 (28.99) 40.65 (29.26)

z-scored CSF Aβ42 −2.45 (1.60) −2.19 (1.78) −2.38 (1.72)

z-scored CSF p-tau 2.08 (2.501) 0.91 (2.03) 1.51 (2.03)

Abbreviations: Aβ = β-amyloid; AD = Alzheimer disease; CU = cognitively unimpaired, including both controls and subjective cognitive decliners.
Cognitively impaired participants had a clinical diagnosis of mild cognitive impairment or a Clinical Dementia Rating of 0.5 (in the absence of a clinical
diagnosis). Dementia includes both AD and non-AD. Values are mean (SD) or n (%).
a 2 (0.5%) missing, 215 (51.9%) CU, 112 (27.1%) cognitively impaired, 82 (19.8%) dementia.
b 2 (1.0%) missing, 109 (54.8%) CU, 50 (25.1%) cognitively impaired, 38 (19.1%) dementia.
c 4 (2.3%) missing, 77 (44.0%) CU, 41 (23.4%) cognitively impaired, 53 (30.3%) dementia.
d Participant carries at least 1 APOE e4 allele.
e Participant carries at least 1 APOE e2 allele.
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themajority of participants were cognitively normal and had no
amyloid, thus the amount of data with variable amyloid burden
was already limited. In addition, it should be noted that the
majority of the data included in this work were used previously
to describe a 1-trajectory amyloid accumulation pattern, al-
though implementing a different methodologic approach.9

Thus, the high agreement between the SuStaIn-identified
1-trajectory model and some of the previous staging work is
possibly partly due to the reuse of data. Second, while CL units
are generally used to pool PET data, we standardized regional
SUVR using a z-scoring approach. This was done to account for
not only tracer differences, but also for the differential signal
distortion effects between medial and lateral regions (inherit to
the PET metric),4 which is not taken into account in the CL
approach.22 Third, whereas our initial results suggest robust
assignment over time (i.e., stable for 87.7% of participants),
only ADNI and OASIS-3 had available longitudinal PET im-
aging data, limiting our sample sizes for longitudinal analyses,
especially for the occipital subtype. Finally, yearly rates of
change in amyloid burden might be underestimated for the
occipital subtype, as the CL mask does not include this region.

The SuStaIn model provides data-driven evidence for the
existence of 3 spatiotemporal subtypes of cortical amyloid
accumulation and opens possibilities for further exploration of
the identified subtypes. The initial results indicate differences
in their relation to AD risk factors as well as prognosis, and
therefore suggest that subtype assignment may have clinical
relevance or could support individualized risk assessment.
Future work should assess whether subtypes are associated
with distinct cognitive profiles or risk of cognitive decline and
investigate the possible underlying pathophysiology.
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Salvadó, PhD

Barcelonaβeta Research
Center, Barcelona, Spain

Literature search, design,
data collection, analysis,
interpretation, drafted
manuscript

Viktor
Wottschel, PhD

Amsterdam UMC, VUmc,
the Netherlands

Design, analysis,
interpretation, drafted
manuscript, revised
manuscript

Sophie E.
Mastenbroek,
MSc

Amsterdam UMC, VUmc,
the Netherlands

Analyses, interpretation,
drafted manuscript,
revised manuscript

Pierre
Schoenmakers,
BSc

Amsterdam UMC, VUmc,
the Netherlands

Data collection, analysis,
revised manuscript

Fiona Heeman,
MSc

Amsterdam UMC, VUmc,
the Netherlands

Data collection,
interpretation, revised
manuscript

Leon M.
Aksman, PhD

Stevens Neuroimaging and
Informatics Institute,
University of Southern
California, Los Angeles

Analysis, revised
manuscript

Alle Meije Wink,
PhD

Amsterdam UMC, VUmc,
the Netherlands

Interpretation, revised
manuscript

Bart N.M. van
Berckel, PhD

Amsterdam UMC, VUmc,
the Netherlands

Data collection,
interpretation, revised
manuscript

Wiesje M. van
der Flier, PhD

Amsterdam UMC, VUmc,
the Netherlands

Data collection, analyses,
interpretation, revised
manuscript

Philip
Scheltens, PhD

Amsterdam UMC, VUmc,
the Netherlands

Data collection, revised
manuscript

Pieter Jelle
Visser, PhD

Amsterdam UMC, VUmc,
the Netherlands

Data collection, revised
manuscript

Frederik
Barkhof, PhD

Amsterdam UMC, VUmc,
the Netherlands;
University College London,
UK

Data collection,
interpretation, revised
manuscript

Sven Haller,
PhD

Faculty of Medicine of the
University of Geneva,
Switzerland

Design, analyses,
interpretation, revised
manuscript

Juan Domingo
Gispert, PhD

Barcelonaβeta Research
Center, Barcelona, Spain

Design, data collection,
analyses, interpretation,
revised manuscript

Isadora Lopes
Alves, PhD

Amsterdam UMC, VUmc,
the Netherlands

Literature search, design,
analysis, interpretation,
drafted manuscript

Appendix 2 Coinvestigators

ADNI coinvestigators are listed at links.lww.com/WNL/B862

Neurology.org/N Neurology | Volume 98, Number 17 | April 26, 2022 e1703

http://links.lww.com/WNL/B863
http://links.lww.com/WNL/B862
http://neurology.org/n


DOI 10.1212/WNL.0000000000200148
2022;98;e1692-e1703 Published Online before print March 15, 2022Neurology 

Lyduine E. Collij, Gemma Salvadó, Viktor Wottschel, et al. 
Model Analysis

-Amyloid Accumulation: A Subtype and Stage InferenceβSpatial-Temporal Patterns of 

This information is current as of March 15, 2022

Services
Updated Information &

 http://n.neurology.org/content/98/17/e1692.full
including high resolution figures, can be found at:

References
 http://n.neurology.org/content/98/17/e1692.full#ref-list-1

This article cites 31 articles, 5 of which you can access for free at: 

Citations
 http://n.neurology.org/content/98/17/e1692.full##otherarticles

This article has been cited by 1 HighWire-hosted articles: 

Subspecialty Collections

 http://n.neurology.org/cgi/collection/pet
PET

 http://n.neurology.org/cgi/collection/alzheimers_disease
Alzheimer's disease
following collection(s): 
This article, along with others on similar topics, appears in the

Errata

 /content/early/2022/09/30/WNL.0000000000201144.full.pdf
 or: page

nextAn erratum has been published regarding this article. Please see 

  
Permissions & Licensing

 http://www.neurology.org/about/about_the_journal#permissions
its entirety can be found online at:
Information about reproducing this article in parts (figures,tables) or in

  
Reprints

 http://n.neurology.org/subscribers/advertise
Information about ordering reprints can be found online:

ISSN: 0028-3878. Online ISSN: 1526-632X.
Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Print
1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2022 The Author(s). Published by 

® is the official journal of the American Academy of Neurology. Published continuously sinceNeurology 

http://n.neurology.org/content/98/17/e1692.full
http://n.neurology.org/content/98/17/e1692.full#ref-list-1
http://n.neurology.org/content/98/17/e1692.full##otherarticles
http://n.neurology.org/cgi/collection/alzheimers_disease
http://n.neurology.org/cgi/collection/pet
http://www.neurology.org/about/about_the_journal#permissions
http://n.neurology.org/subscribers/advertise


 

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited 

 

Neurology Publish Ahead of Print 
DOI: 10.1212/WNL.0000000000201144 
 
 
 
 
 
 
CORRECTION  
 
Spatial-Temporal Patterns of β-Amyloid Accumulation: A Subtype and Stage Inference Model 
Analysis 

In the Research Article “Spatial-Temporal Patterns of β-Amyloid Accumulation: A Subtype and Stage 
Inference Model Analysis” by Collij et al.1, the following information was mistakenly omitted from the 
Acknowledgements section:  

“Data were provided by OASIS OASIS-3: Principal Investigators: T. Benzinger, D. Marcus, J. 
Morris; NIH P50 AG00561, P30 NS09857781, P01 AG026276, P01 AG003991, R01 AG043434, 
UL1 TR000448, R01 EB009352. AV-45 doses were provided by Avid Radiopharmaceuticals, a 
wholly owned subsidiary of Eli Lilly. OASIS-3: https://doi.org/10.1101/2019.12.13.19014902.” 

The authors regret the omission.  
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