Magnetic Resonance Imaging (MRI)

Quality assurance of magnetic resonance spectroscopic imaging-derived metabolic data

PURPOSE: Spatially resolved metabolite maps, as measured by magnetic resonance spectroscopic imaging (MRSI) methods, are being increasingly used to acquire metabolic information to guide therapy, with metabolite ratio maps perhaps providing the most diagnostic information. We present a quality assurance procedure for MRSI-derived metabolic data acquired ultimately for guiding conformal radiotherapy.

Publication Type: 
Journal Articles
Journal: 
Int J Radiat Oncol Biol Phys

Fast CT-PRESS-based spiral chemical shift imaging at 3 Tesla

A new sequence is presented that combines constant-time point-resolved spectroscopy (CT-PRESS) with fast spiral chemical shift imaging. It allows the acquisition of multivoxel spectra without line splitting with a minimum total measurement time of less than 5 min for a field of view of 24 cm and a nominal 1.5x1.5-cm2 in-plane resolution. Measurements were performed with 17 CS encoding steps in t1 (Deltat1=12.8 ms) and an average echo time of 151 ms, which was determined by simulating the CT-PRESS experiment for the spin systems of glutamate (Glu) and myo-inositol (mI).

Publication Type: 
Journal Articles
Journal: 
Magn Reson Med

Spiral readout gradients for the reduction of motion artifacts in chemical shift imaging

A motion artifact reduction method for proton chemical shift imaging (CSI) is presented. The method uses spiral-based readout gradients for data acquisition. A characteristic of spiral-based readout gradients is that data are repeatedly sampled at the kxy origin. These data points are used to estimate and correct for motion-induced phase variations. Both phantom and in vivo spectra reconstructed using the new motion artifact reduction algorithm showed significant signal-to-noise ratio (SNR) improvements as compared to uncorrected data.

Publication Type: 
Journal Articles
Journal: 
Magn Reson Med

Neuroimaging of rodent and primate models of alcoholism: initial reports from the integrative neuroscience initiative on alcoholism

Neuroimaging of animal models of alcoholism offers a unique path for translational research to the human condition. Animal models permit manipulation of variables that are uncontrollable in clinical, human investigation. This symposium, which took place at the annual meeting of the Research Society on Alcoholism in Vancouver, British Columbia, Canada, on June 29th, 2004, presented initial findings based on neuroimaging studies from the two centers of the Integrative Neuroscience Initiative on Alcoholism funded by the National Institute on Alcohol Abuse and Alcoholism.

Publication Type: 
Journal Articles
Journal: 
Alcohol Clin Exp Res

Longitudinal brain magnetic resonance imaging study of the alcohol-preferring rat. Part I: adult brain growth

BACKGROUND: The alcohol-preferring (P) rat, a Wistar strain selectively bred to consume large amounts of alcohol voluntarily, has been used as an animal model of human alcoholism for 3 decades. Heretofore, knowledge about brain morphology has been confined to postmortem examination. Quantitative neuroimaging procedures make it feasible to examine the potential longitudinal effects of alcohol exposure in vivo, while controlling modifying factors, such as age, nutrition, and exercise.

Publication Type: 
Journal Articles
Journal: 
Alcohol Clin Exp Res

Phase-based regional oxygen metabolism (PROM) using MRI

Venous oxygen saturation (Y(v) ) in cerebral veins and the cerebral metabolic rate of oxygen (CMRO(2)) are important indicators for brain function and disease. Although MRI has been used for global measurements of these parameters, currently there is no recognized technique to quantify regional Y(v) and CMRO(2) using noninvasive imaging. This article proposes a technique to quantify CMRO(2) from independent MRI estimates of Y(v) and cerebral blood flow. The approach uses standard gradient-echo and arterial spin labeling acquisitions to make these measurements.

Publication Type: 
Journal Articles
Journal: 
Magn Reson Med

Measuring SPIO and Gd contrast agent magnetization using 3 T MRI

Traditional methods of measuring magnetization in magnetic fluid samples, such as vibrating sample magnetometry (VSM), are typically limited to maximum field strengths of about 1 T. This work demonstrates the ability of MRI to measure the magnetization associated with two commercial MRI contrast agents at 3 T by comparing analytical solutions to experimental imaging results for the field pattern associated with agents in cylindrical vials. The results of the VSM and fitted MRI data match closely.

Publication Type: 
Journal Articles
Journal: 
NMR Biomed

MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping

Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ℓ1 and ℓ2 norm regularized QSM algorithms.

Publication Type: 
Journal Articles
Journal: 
Neuroimage

Local SAR in parallel transmission pulse design

The management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design.

Publication Type: 
Journal Articles
Journal: 
Magn Reson Med

Lipid suppression in CSI with spatial priors and highly undersampled peripheral k-space

Mapping 1H brain metabolites using chemical shift imaging is hampered by the presence of subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial resolution. Even though chemical shift imaging at spatial resolution high enough to mitigate the lipid artifacts is infeasible due to signal-to-noise constraints on the metabolites, the lipid signals have orders of magnitude of higher concentration, which enables the collection of high-resolution lipid maps with adequate signal-to-noise.

Publication Type: 
Journal Articles
Journal: 
Magn Reson Med

Pages

Subscribe to RSS - Magnetic Resonance Imaging (MRI)