Magnetic Resonance Imaging (MRI)

Parallel imaging reconstruction using automatic regularization

Increased spatiotemporal resolution in MRI can be achieved by the use of parallel acquisition strategies, which simultaneously sample reduced k-space data using the information from multiple receivers to reconstruct full-FOV images. The price for the increased spatiotemporal resolution in parallel MRI is the degradation of the signal-to-noise ratio (SNR) in the final reconstructed images. Part of the SNR reduction results when the spatially correlated nature of the information from the multiple receivers destabilizes the matrix inversion used in the reconstruction of the full-FOV image.

Publication Type: 
Journal Articles
Journal: 
Magn Reson Med

MRI of blood volume with superparamagnetic iron in choroidal melanoma treated with thermotherapy

Functional magnetic resonance imaging (MRI) with a new intravascular contrast agent, monocrystalline iron oxide nanoparticles (MION), was applied to assess the effect of transpupillary thermotherapy in a rabbit model of choroidal melanoma. 3D-spoiled gradient recalled sequences were used for quantitative assessment of blood volume. The MRI-parameters were 5/22/35 degrees (time of repetition (TR)/echo delay (TE)/flip angle (FA)) for T(1)- and 50/61/10 degrees for T(2)-weighted sequences. Images were collected before and at different times after MION injection.

Publication Type: 
Journal Articles
Journal: 
Magn Reson Imaging

Two routes to emotional memory: distinct neural processes for valence and arousal

Prior investigations have demonstrated that emotional information is often better remembered than neutral information, but they have not directly contrasted effects attributable to valence and those attributable to arousal. By using functional MRI and behavioral studies, we found that distinct cognitive and neural processes contribute to emotional memory enhancement for arousing information versus valenced, nonarousing information.

Publication Type: 
Journal Articles
Journal: 
Proc Natl Acad Sci U S A

Functional-neuroanatomic correlates of recollection: implications for models of recognition memory

Recognition decisions can be based on familiarity, the sense that an item was encountered previously (item memory), and on recollection, the conscious recovery of contextual information surrounding a previous encounter with the item (e.g., source memory). Recognition with recollection is thought to depend on multiple mechanisms, including prefrontal "control" processes that guide retrieval and recapitulation mechanisms that reactivate posterior neocortical representations that were present at encoding.

Publication Type: 
Journal Articles
Journal: 
J Neurosci

Mapping dopamine function in primates using pharmacologic magnetic resonance imaging

Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI.

Publication Type: 
Journal Articles
Journal: 
J Neurosci

Encoding activity in anterior medial temporal lobe supports subsequent associative recognition

The ability to bind information together, such as linking a name with a face or a car with a parking space, is a vital process in human episodic memory. To identify the neural bases for this binding process, we measured brain activity during a verbal associative encoding task using event-related functional MRI (fMRI), followed by an associative recognition test for the studied word pairs. Analysis of the encoding data sorted by the associative recognition accuracy allowed us to isolate regions involved in successfully creating associations.

Publication Type: 
Journal Articles
Journal: 
Neuroimage

Human posterior auditory cortex gates novel sounds to consciousness

Life or death in hostile environments depends crucially on one's ability to detect and gate novel sounds to awareness, such as that of a twig cracking under the paw of a stalking predator in a noisy jungle. Two distinct auditory cortex processes have been thought to underlie this phenomenon: (i) attenuation of the so-called N1 response with repeated stimulation and (ii) elicitation of a mismatch negativity response (MMN) by changes in repetitive aspects of auditory stimulation.

Publication Type: 
Journal Articles
Journal: 
Proc Natl Acad Sci U S A

Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury

BACKGROUND AND PURPOSE: Multiple biomarkers are used to quantify the severity of traumatic brain injury (TBI) and to predict outcome. Few are satisfactory. CT and conventional MR imaging underestimate injury and correlate poorly with outcome. New MR imaging techniques, including diffusion tensor imaging (DTI), can provide information about brain ultrastructure by quantifying isotropic and anisotropic water diffusion. Our objective was to determine if changes in anisotropic diffusion in TBI correlate with acute Glasgow coma scale (GCS) and/or Rankin scores at discharge.

Publication Type: 
Journal Articles
Journal: 
AJNR Am J Neuroradiol

Activation of the fusiform gyrus when individuals with autism spectrum disorder view faces

Prior imaging studies have failed to show activation of the fusiform gyrus in response to emotionally neutral faces in individuals with autism spectrum disorder (ASD) [Critchley et al., Brain 124 (2001) 2059; Schultz et al., Arch. Gen. Psychiatry 57 (2000) 331]. However, individuals with ASD do not typically exhibit the striking behavioral deficits that might be expected to result from fusiform gyrus damage, such as those seen in prosopagnosia, and their deficits appear to extend well beyond face identification to include a wide range of impairments in social perceptual processing.

Publication Type: 
Journal Articles
Journal: 
Neuroimage

Early visual cortex organization in autism: an fMRI study

Autism is a neurodevelopmental disorder characterized by preserved visual abilities as well as a special profile for visual cognition. We examined the visual cortex of high-ability individuals with autism in order to assess whether the presence of abnormalities at the primary sensory level in autism could be the basis of their unusual pattern of visual cognitive abilities. We found that the early sensory visual areas are normally organized in individuals with autism, with a normal ratio between central versus peripheral visual field representation.

Publication Type: 
Journal Articles
Journal: 
Neuroreport

Pages

Subscribe to RSS - Magnetic Resonance Imaging (MRI)