Magnetic Resonance Imaging (MRI)

Pediatric functional magnetic resonance imaging: progress and challenges

Functional magnetic resonance imaging (fMRI) in the pediatric population promises to provide novel insights into the nature of both normal and abnormal functional brain development as well as changes in brain function due to various interventions. Although acquisition of fMRI data from children is associated with a number of methodological challenges, primarily compliance and head motion, good quality data can be obtained. For example, conditioning and personal interactions can improve compliance, and motion reduction techniques can successfully reduce artifacts due to head motion.

Publication Type: 
Journal Articles
Journal: 
Top Magn Reson Imaging

Monte Carlo simulation studies of EEG and MEG localization accuracy

Both electroencephalography (EEG) and magnetoencephalography (MEG) are currently used to localize brain activity. The accuracy of source localization depends on numerous factors, including the specific inverse approach and source model, fundamental differences in EEG and MEG data, and the accuracy of the volume conductor model of the head (i.e., the forward model). Using Monte Carlo simulations, this study removes the effect of forward model errors and theoretically compares the use of EEG alone, MEG alone, and combined EEG/MEG data sets for source localization.

Publication Type: 
Journal Articles
Journal: 
Hum Brain Mapp

Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla

Iron oxide contrast agents have been employed extensively in anesthetized rodents to enhance fMRI sensitivity and to study the physiology of cerebral blood volume (CBV) in relation to blood oxygen level-dependent (BOLD) signal following neuronal activation. This study quantified the advantages of exogenous agent for repeated neuroimaging in awake, nonhuman primates using a clinical 3 Tesla scanner. A monocrystalline iron oxide nanoparticle (MION) solution was injected at iron doses of 8 to 10 mg/kg in two macaque monkeys.

Publication Type: 
Journal Articles
Journal: 
Neuroimage

The potential of proton magnetic resonance spectroscopy ((1)H-MRS) in the diagnosis and management of patients with brain tumors

Proton ((1)H) magnetic resonance spectroscopy (MRS) is a noninvasive method that can monitor the metabolic changes in most brain diseases. This technique is now available on current 1.5 Tesla magnetic resonance units and does not require sophisticated software or time-consuming post-processing techniques. Previous studies using single-voxel techniques showed the usefulness of MRS for the diagnosis of brain tumor despite some technical issues, including spatial resolution and volume coverage.

Publication Type: 
Journal Articles
Journal: 
Curr Opin Oncol

Diffusion-weighted MRI in diffuse axonal injury of the brain

The goal of this study was to identify and describe the different types and patterns of tissue injury which are encountered by diffusion-weighted imaging (DWI) in diffuse axonal injury (DAI) of the brain. The DWI data sets of 98 patients who suffered from a closed-head injury were retrospectively evaluated. Medical records were reviewed to rule out pre-existing neurological diseases. Lesions were studied for their DWI signal characteristics and lesion size or extension.

Publication Type: 
Journal Articles
Journal: 
Eur Radiol

N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences

Words have been found to elicit a negative potential at the scalp peaking at approximately 400 ms that is strongly modulated by semantic context. The current study used whole-head magnetoencephalography (MEG) as male subjects read sentences ending with semantically congruous or incongruous words. Compared with congruous words, sentence-terminal incongruous words consistently evoked a large magnetic field over the left hemisphere, peaking at approximately 450 ms.

Publication Type: 
Journal Articles
Journal: 
Neuroimage

Neural basis of prosopagnosia: an fMRI study

Brain imaging research has identified at least two regions in human extrastriate cortex responding selectively to faces. One of these is located in the mid-fusiform gyrus (FFA), the other in the inferior occipital gyrus (IOG). We studied activation of these areas using fMRI in three individuals with severely impaired face recognition (one pure developmental and two childhood prosopagnosics). None of the subjects showed the normal pattern of higher fMRI activity to faces than to objects in the FFA and IOG or elsewhere.

Publication Type: 
Journal Articles
Journal: 
Hum Brain Mapp

Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging

BACKGROUND: Previous studies suggest that the impact of early insults predisposing to schizophrenia may have differential consequences by sex. We hypothesized that brain regions found to be structurally different in normal men and women (sexual dimorphisms) and abnormal in schizophrenia would show significant sex differences in brain abnormalities, particularly in the cortex, in schizophrenia.

Publication Type: 
Journal Articles
Journal: 
Arch Gen Psychiatry

Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain

We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala.

Publication Type: 
Journal Articles
Journal: 
Neuron

Pages

Subscribe to RSS - Magnetic Resonance Imaging (MRI)