from __future__ import print_function
import mne
import numpy as np
Info
objects¶Note
for full documentation on the Info object, see The Info data structure. See also Creating MNE objects from data arrays.
Normally, mne.Info
objects are created by the various
data import functions.
However, if you wish to create one from scratch, you can use the
mne.create_info()
function to initialize the minimally required
fields. Further fields can be assigned later as one would with a regular
dictionary.
The following creates the absolute minimum info structure:
# Create some dummy metadata
n_channels = 32
sampling_rate = 200
info = mne.create_info(n_channels, sampling_rate)
print(info)
Out:
<Info | 15 non-empty fields
bads : list | 0 items
ch_names : list | 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
chs : list | 32 items (MISC: 32)
comps : list | 0 items
custom_ref_applied : bool | False
dev_head_t : 'mne.transforms.Transform | 3 items
events : list | 0 items
highpass : float | 0.0 Hz
hpi_meas : list | 0 items
hpi_results : list | 0 items
lowpass : float | 100.0 Hz
meas_date : numpy.ndarray | 1970-01-01 00:00:00
nchan : int | 32
projs : list | 0 items
sfreq : float | 200.0 Hz
acq_pars : NoneType
acq_stim : NoneType
buffer_size_sec : NoneType
ctf_head_t : NoneType
description : NoneType
dev_ctf_t : NoneType
dig : NoneType
experimenter : NoneType
file_id : NoneType
hpi_subsystem : NoneType
kit_system_id : NoneType
line_freq : NoneType
meas_id : NoneType
proj_id : NoneType
proj_name : NoneType
subject_info : NoneType
xplotter_layout : NoneType
>
You can also supply more extensive metadata:
# Names for each channel
channel_names = ['MEG1', 'MEG2', 'Cz', 'Pz', 'EOG']
# The type (mag, grad, eeg, eog, misc, ...) of each channel
channel_types = ['grad', 'grad', 'eeg', 'eeg', 'eog']
# The sampling rate of the recording
sfreq = 1000 # in Hertz
# The EEG channels use the standard naming strategy.
# By supplying the 'montage' parameter, approximate locations
# will be added for them
montage = 'standard_1005'
# Initialize required fields
info = mne.create_info(channel_names, sfreq, channel_types, montage)
# Add some more information
info['description'] = 'My custom dataset'
info['bads'] = ['Pz'] # Names of bad channels
print(info)
Out:
<Info | 16 non-empty fields
bads : list | Pz
ch_names : list | MEG1, MEG2, Cz, Pz, EOG
chs : list | 5 items (EOG: 1, EEG: 2, GRAD: 2)
comps : list | 0 items
custom_ref_applied : bool | False
description : str | 17 items
dev_head_t : 'mne.transforms.Transform | 3 items
events : list | 0 items
highpass : float | 0.0 Hz
hpi_meas : list | 0 items
hpi_results : list | 0 items
lowpass : float | 500.0 Hz
meas_date : numpy.ndarray | 1970-01-01 00:00:00
nchan : int | 5
projs : list | 0 items
sfreq : float | 1000.0 Hz
acq_pars : NoneType
acq_stim : NoneType
buffer_size_sec : NoneType
ctf_head_t : NoneType
dev_ctf_t : NoneType
dig : NoneType
experimenter : NoneType
file_id : NoneType
hpi_subsystem : NoneType
kit_system_id : NoneType
line_freq : NoneType
meas_id : NoneType
proj_id : NoneType
proj_name : NoneType
subject_info : NoneType
xplotter_layout : NoneType
>
Note
When assigning new values to the fields of an
mne.Info
object, it is important that the
fields are consistent:
Raw
objects¶To create a mne.io.Raw
object from scratch, you can use the
mne.io.RawArray
class, which implements raw data that is backed by a
numpy array. The correct units for the data are:
The mne.io.RawArray
constructor simply takes the data matrix and
mne.Info
object:
# Generate some random data
data = np.random.randn(5, 1000)
# Initialize an info structure
info = mne.create_info(
ch_names=['MEG1', 'MEG2', 'EEG1', 'EEG2', 'EOG'],
ch_types=['grad', 'grad', 'eeg', 'eeg', 'eog'],
sfreq=100
)
custom_raw = mne.io.RawArray(data, info)
print(custom_raw)
Out:
<RawArray | None, n_channels x n_times : 5 x 1000 (10.0 sec), ~55 kB, data loaded>
Epochs
objects¶To create an mne.Epochs
object from scratch, you can use the
mne.EpochsArray
class, which uses a numpy array directly without
wrapping a raw object. The array must be of shape(n_epochs, n_chans,
n_times). The proper units of measure are listed above.
# Generate some random data: 10 epochs, 5 channels, 2 seconds per epoch
sfreq = 100
data = np.random.randn(10, 5, sfreq * 2)
# Initialize an info structure
info = mne.create_info(
ch_names=['MEG1', 'MEG2', 'EEG1', 'EEG2', 'EOG'],
ch_types=['grad', 'grad', 'eeg', 'eeg', 'eog'],
sfreq=sfreq
)
It is necessary to supply an “events” array in order to create an Epochs object. This is of shape(n_events, 3) where the first column is the sample number (time) of the event, the second column indicates the value from which the transition is made from (only used when the new value is bigger than the old one), and the third column is the new event value.
# Create an event matrix: 10 events with alternating event codes
events = np.array([
[0, 0, 1],
[1, 0, 2],
[2, 0, 1],
[3, 0, 2],
[4, 0, 1],
[5, 0, 2],
[6, 0, 1],
[7, 0, 2],
[8, 0, 1],
[9, 0, 2],
])
More information about the event codes: subject was either smiling or frowning
event_id = dict(smiling=1, frowning=2)
Finally, we must specify the beginning of an epoch (the end will be inferred from the sampling frequency and n_samples)
# Trials were cut from -0.1 to 1.0 seconds
tmin = -0.1
Now we can create the mne.EpochsArray
object
custom_epochs = mne.EpochsArray(data, info, events, tmin, event_id)
print(custom_epochs)
# We can treat the epochs object as we would any other
_ = custom_epochs['smiling'].average().plot()
Out:
<EpochsArray | n_events : 10 (all good), tmin : -0.1 (s), tmax : 1.89 (s), baseline : None, ~94 kB, data loaded,
'frowning': 5, 'smiling': 5>
Evoked
Objects¶If you already have data that is collapsed across trials, you may also directly create an evoked array. Its constructor accepts an array of shape(n_chans, n_times) in addition to some bookkeeping parameters. The proper units of measure for the data are listed above.
# The averaged data
data_evoked = data.mean(0)
# The number of epochs that were averaged
nave = data.shape[0]
# A comment to describe to evoked (usually the condition name)
comment = "Smiley faces"
# Create the Evoked object
evoked_array = mne.EvokedArray(data_evoked, info, tmin,
comment=comment, nave=nave)
print(evoked_array)
_ = evoked_array.plot()
Out:
<Evoked | comment : 'Smiley faces', kind : average, time : [-0.100000, 1.890000], n_epochs : 10, n_channels x n_times : 5 x 200, ~24 kB>
Total running time of the script: ( 0 minutes 0.845 seconds)