mne.beamformer.
lcmv
(evoked, forward, noise_cov, data_cov, reg=0.05, label=None, pick_ori=None, picks=None, rank=None, verbose=None)[source]¶Linearly Constrained Minimum Variance (LCMV) beamformer.
Compute Linearly Constrained Minimum Variance (LCMV) beamformer on evoked data.
Note
This implementation has not been heavily tested so please report any issue or suggestions.
Parameters: | evoked : Evoked
forward : dict
noise_cov : Covariance
data_cov : Covariance
reg : float
label : Label
pick_ori : None | ‘normal’ | ‘max-power’
picks : array-like of int
rank : None | int | dict
verbose : bool, str, int, or None
|
---|---|
Returns: | stc : SourceEstimate | VolSourceEstimate
|
See also
Notes
The original reference is: Van Veen et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. Biomedical Engineering (1997) vol. 44 (9) pp. 867–880
The reference for finding the max-power orientation is: Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. Biomedical Engineering (2004) vol. 51 (10) pp. 1726–34