mne.decoding.FilterEstimator(info, l_freq, h_freq, picks=None, filter_length=’auto’, l_trans_bandwidth=’auto’, h_trans_bandwidth=’auto’, n_jobs=1, method=’fft’, iir_params=None, verbose=None)[source]¶Estimator to filter RtEpochs.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop filter to the channels selected by “picks”.
l_freq and h_freq are the frequencies below which and above which, respectively, to filter out of the data. Thus the uses are:
- l_freq < h_freq: band-pass filter
- l_freq > h_freq: band-stop filter
- l_freq is not None, h_freq is None: low-pass filter
- l_freq is None, h_freq is not None: high-pass filter
If n_jobs > 1, more memory is required as “len(picks) * n_times” additional time points need to be temporarily stored in memory.
| Parameters: | info : instance of Info 
 l_freq : float | None 
 h_freq : float | None 
 picks : array-like of int | None 
 filter_length : str (Default: ‘10s’) | int | None 
 l_trans_bandwidth : float 
 h_trans_bandwidth : float 
 n_jobs : int | str 
 method : str 
 iir_params : dict | None 
 verbose : bool, str, int, or None 
 | 
|---|
See also
Methods
| __hash__() <==> hash(x) | |
| fit(epochs_data, y) | Filter data. | 
| fit_transform(X[, y]) | Fit to data, then transform it. | 
| transform(epochs_data[, y]) | Filter data. | 
__hash__() <==> hash(x)¶fit(epochs_data, y)[source]¶Filter data.
| Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times) 
 y : array, shape (n_epochs,) 
 | 
|---|---|
| Returns: | self : instance of FilterEstimator 
 | 
fit_transform(X, y=None, **fit_params)[source]¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: | X : numpy array of shape [n_samples, n_features] 
 y : numpy array of shape [n_samples] 
 | 
|---|---|
| Returns: | X_new : numpy array of shape [n_samples, n_features_new] 
 | 
transform(epochs_data, y=None)[source]¶Filter data.
| Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times) 
 y : None | array, shape (n_epochs,) 
 | 
|---|---|
| Returns: | X : array, shape (n_epochs, n_channels, n_times) 
 |