mne.decoding.
FilterEstimator
(info, l_freq, h_freq, picks=None, filter_length=’auto’, l_trans_bandwidth=’auto’, h_trans_bandwidth=’auto’, n_jobs=1, method=’fft’, iir_params=None, verbose=None)[source]¶Estimator to filter RtEpochs.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop filter to the channels selected by “picks”.
l_freq and h_freq are the frequencies below which and above which, respectively, to filter out of the data. Thus the uses are:
- l_freq < h_freq: band-pass filter
- l_freq > h_freq: band-stop filter
- l_freq is not None, h_freq is None: low-pass filter
- l_freq is None, h_freq is not None: high-pass filter
If n_jobs > 1, more memory is required as “len(picks) * n_times” additional time points need to be temporarily stored in memory.
Parameters: | info : instance of Info
l_freq : float | None
h_freq : float | None
picks : array-like of int | None
filter_length : str (Default: ‘10s’) | int | None
l_trans_bandwidth : float
h_trans_bandwidth : float
n_jobs : int | str
method : str
iir_params : dict | None
verbose : bool, str, int, or None
|
---|
See also
Methods
__hash__ () <==> hash(x) |
|
fit (epochs_data, y) |
Filter data. |
fit_transform (X[, y]) |
Fit to data, then transform it. |
transform (epochs_data[, y]) |
Filter data. |
__hash__
() <==> hash(x)¶fit
(epochs_data, y)[source]¶Filter data.
Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times)
y : array, shape (n_epochs,)
|
---|---|
Returns: | self : instance of FilterEstimator
|
fit_transform
(X, y=None, **fit_params)[source]¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
transform
(epochs_data, y=None)[source]¶Filter data.
Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times)
y : None | array, shape (n_epochs,)
|
---|---|
Returns: | X : array, shape (n_epochs, n_channels, n_times)
|