mne.decoding.
PSDEstimator
(sfreq=6.283185307179586, fmin=0, fmax=inf, bandwidth=None, adaptive=False, low_bias=True, n_jobs=1, normalization=’length’, verbose=None)[source]¶Compute power spectrum density (PSD) using a multi-taper method.
Parameters: | sfreq : float
fmin : float
fmax : float
bandwidth : float
adaptive : bool
low_bias : bool
n_jobs : int
normalization : str
verbose : bool, str, int, or None
|
---|
See also
psd_multitaper
Methods
__hash__ () <==> hash(x) |
|
fit (epochs_data, y) |
Compute power spectrum density (PSD) using a multi-taper method. |
fit_transform (X[, y]) |
Fit to data, then transform it. |
transform (epochs_data[, y]) |
Compute power spectrum density (PSD) using a multi-taper method. |
__hash__
() <==> hash(x)¶fit
(epochs_data, y)[source]¶Compute power spectrum density (PSD) using a multi-taper method.
Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times)
y : array, shape (n_epochs,)
|
---|---|
Returns: | self : instance of PSDEstimator
|
fit_transform
(X, y=None, **fit_params)[source]¶Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
transform
(epochs_data, y=None)[source]¶Compute power spectrum density (PSD) using a multi-taper method.
Parameters: | epochs_data : array, shape (n_epochs, n_channels, n_times)
y : None | array, shape (n_epochs,)
|
---|---|
Returns: | psd : array, shape (n_signals, len(freqs)) or (len(freqs),)
|