mne.decoding.
UnsupervisedSpatialFilter
(estimator, average=False)[source]¶Use unsupervised spatial filtering across time and samples.
Parameters: | estimator : scikit-learn estimator
average : bool, defaults to False
|
---|
Methods
__hash__ () <==> hash(x) |
|
fit (X[, y]) |
Fit the spatial filters. |
fit_transform (X[, y]) |
Transform the data to its filtered components after fitting. |
get_params ([deep]) |
Get parameters for this estimator. |
set_params (**params) |
Set the parameters of this estimator. |
transform (X) |
Transform the data to its spatial filters. |
__hash__
() <==> hash(x)¶fit
(X, y=None)[source]¶Fit the spatial filters.
Parameters: | X : array, shape (n_epochs, n_channels, n_times)
y : None | array, shape (n_samples,)
|
---|---|
Returns: | self : Instance of UnsupervisedSpatialFilter
|
fit_transform
(X, y=None)[source]¶Transform the data to its filtered components after fitting.
Parameters: | X : array, shape (n_epochs, n_channels, n_times)
y : None | array, shape (n_samples,)
|
---|---|
Returns: | X : array, shape (n_trials, n_channels, n_times)
|
get_params
(deep=True)[source]¶Get parameters for this estimator.
Parameters: | deep : boolean, optional
|
---|---|
Returns: | params : mapping of string to any
|
set_params
(**params)[source]¶Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each
component of a nested object.
Returns
——-
self