mne.decoding.
Vectorizer
[source]¶Transform n-dimensional array into 2D array of n_samples by n_features.
This class reshapes an n-dimensional array into an n_samples * n_features array, usable by the estimators and transformers of scikit-learn.
Examples
Attributes
features_shape_ |
(tuple) Stores the original shape of data. |
Methods
__hash__ () <==> hash(x) |
|
fit (X[, y]) |
Store the shape of the features of X. |
fit_transform (X[, y]) |
Fit the data, then transform in one step. |
inverse_transform (X) |
Transform 2D data back to its original feature shape. |
transform (X) |
Convert given array into two dimensions. |
__hash__
() <==> hash(x)¶fit
(X, y=None)[source]¶Store the shape of the features of X.
Parameters: | X : array-like
y : None | array, shape (n_samples,)
|
---|---|
Returns: | self : Instance of Vectorizer
|
fit_transform
(X, y=None)[source]¶Fit the data, then transform in one step.
Parameters: | X : array-like
y : None | array, shape (n_samples,)
|
---|---|
Returns: | X : array, shape (n_samples, -1)
|
inverse_transform
(X)[source]¶Transform 2D data back to its original feature shape.
Parameters: | X : array-like, shape (n_samples, n_features)
|
---|---|
Returns: | X : array
|
transform
(X)[source]¶Convert given array into two dimensions.
Parameters: | X : array-like
|
---|---|
Returns: | X : array, shape (n_samples, n_features)
|