Extracting the time series of activations in a label

We first apply a dSPM inverse operator to get signed activations in a label (with positive and negative values) and we then compare different strategies to average the times series in a label. We compare a simple average, with an averaging using the dipoles normal (flip mode) and then a PCA, also using a sign flip.

../../_images/sphx_glr_plot_label_source_activations_001.png

Out:

Reading /home/ubuntu/mne_data/MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102) active
        PCA-v2 (1 x 102) active
        PCA-v3 (1 x 102) active
        Average EEG reference (1 x 60) active
    Found the data of interest:
        t =    -199.80 ...     499.49 ms (Left Auditory)
        0 CTF compensation matrices available
        nave = 55 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
Reading inverse operator decomposition from /home/ubuntu/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif...
    Reading inverse operator info...
    [done]
    Reading inverse operator decomposition...
    [done]
    305 x 305 full covariance (kind = 1) found.
    Read a total of 4 projection items:
        PCA-v1 (1 x 102) active
        PCA-v2 (1 x 102) active
        PCA-v3 (1 x 102) active
        Average EEG reference (1 x 60) active
    Noise covariance matrix read.
    22494 x 22494 diagonal covariance (kind = 2) found.
    Source covariance matrix read.
    22494 x 22494 diagonal covariance (kind = 6) found.
    Orientation priors read.
    22494 x 22494 diagonal covariance (kind = 5) found.
    Depth priors read.
    Did not find the desired covariance matrix (kind = 3)
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    2 source spaces read
    Read a total of 4 projection items:
        PCA-v1 (1 x 102) active
        PCA-v2 (1 x 102) active
        PCA-v3 (1 x 102) active
        Average EEG reference (1 x 60) active
    Source spaces transformed to the inverse solution coordinate frame
Preparing the inverse operator for use...
    Scaled noise and source covariance from nave = 1 to nave = 55
    Created the regularized inverter
    Created an SSP operator (subspace dimension = 3)
    Created the whitener using a full noise covariance matrix (3 small eigenvalues omitted)
    Computing noise-normalization factors (dSPM)...
[done]
Picked 305 channels from the data
Computing inverse...
(eigenleads need to be weighted)...
(dSPM)...
[done]
Extracting time courses for 1 labels (mode: mean)
Extracting time courses for 1 labels (mode: mean_flip)
Extracting time courses for 1 labels (mode: pca_flip)
Number of vertices : 33

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

import matplotlib.pyplot as plt

import mne
from mne.datasets import sample
from mne.minimum_norm import read_inverse_operator, apply_inverse

print(__doc__)

data_path = sample.data_path()
label = 'Aud-lh'
label_fname = data_path + '/MEG/sample/labels/%s.label' % label
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif'

snr = 3.0
lambda2 = 1.0 / snr ** 2
method = "dSPM"  # use dSPM method (could also be MNE or sLORETA)

# Load data
evoked = mne.read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
inverse_operator = read_inverse_operator(fname_inv)
src = inverse_operator['src']

# Compute inverse solution
pick_ori = "normal"  # Get signed values to see the effect of sign filp
stc = apply_inverse(evoked, inverse_operator, lambda2, method,
                    pick_ori=pick_ori)

label = mne.read_label(label_fname)

stc_label = stc.in_label(label)
mean = stc.extract_label_time_course(label, src, mode='mean')
mean_flip = stc.extract_label_time_course(label, src, mode='mean_flip')
pca = stc.extract_label_time_course(label, src, mode='pca_flip')

print("Number of vertices : %d" % len(stc_label.data))

# View source activations
plt.figure()
plt.plot(1e3 * stc_label.times, stc_label.data.T, 'k', linewidth=0.5)
h0, = plt.plot(1e3 * stc_label.times, mean.T, 'r', linewidth=3)
h1, = plt.plot(1e3 * stc_label.times, mean_flip.T, 'g', linewidth=3)
h2, = plt.plot(1e3 * stc_label.times, pca.T, 'b', linewidth=3)
plt.legend([h0, h1, h2], ['mean', 'mean flip', 'PCA flip'])
plt.xlabel('Time (ms)')
plt.ylabel('Source amplitude')
plt.title('Activations in Label : %s' % label)
plt.show()

Total running time of the script: ( 0 minutes 1.074 seconds)

Generated by Sphinx-Gallery