mne.
Covariance
(data, names, bads, projs, nfree, eig=None, eigvec=None, method=None, loglik=None)[source]¶Noise covariance matrix.
Warning
This class should not be instantiated directly, but instead should be created using a covariance reading or computation function.
Parameters: | data : array-like
names : list of str
bads : list of str
projs : list
nfree : int
eig : array-like | None
eigvec : array-like | None
method : str | None
loglik : float
|
---|
Attributes
data |
Numpy array of Noise covariance matrix. |
ch_names |
Channel names. |
nfree |
Number of degrees of freedom. |
Methods
__add__ (cov) |
Add Covariance taking into account number of degrees of freedom. |
__contains__ ((k) -> True if D has a key k, …) |
|
__getitem__ |
x.__getitem__(y) <==> x[y] |
__iter__ () <==> iter(x) |
|
__len__ () <==> len(x) |
|
as_diag () |
Set covariance to be processed as being diagonal. |
clear (() -> None. Remove all items from D.) |
|
copy () |
Copy the Covariance object. |
fromkeys (…) |
v defaults to None. |
get ((k[,d]) -> D[k] if k in D, …) |
|
has_key ((k) -> True if D has a key k, else False) |
|
items (() -> list of D’s (key, value) pairs, …) |
|
iteritems (() -> an iterator over the (key, …) |
|
iterkeys (() -> an iterator over the keys of D) |
|
itervalues (…) |
|
keys (() -> list of D’s keys) |
|
plot (info[, exclude, colorbar, proj, …]) |
Plot Covariance data. |
pop ((k[,d]) -> v, …) |
If key is not found, d is returned if given, otherwise KeyError is raised |
popitem (() -> (k, v), …) |
2-tuple; but raise KeyError if D is empty. |
save (fname) |
Save covariance matrix in a FIF file. |
setdefault ((k[,d]) -> D.get(k,d), …) |
|
update (([E, …) |
If E present and has a .keys() method, does: for k in E: D[k] = E[k] |
values (() -> list of D’s values) |
|
viewitems (…) |
|
viewkeys (…) |
|
viewvalues (…) |
__contains__
(k) → True if D has a key k, else False¶__getitem__
()¶x.__getitem__(y) <==> x[y]
__iter__
() <==> iter(x)¶__len__
() <==> len(x)¶as_diag
()[source]¶Set covariance to be processed as being diagonal.
Returns: | cov : dict
|
---|
Notes
This function allows creation of inverse operators equivalent to using the old “–diagnoise” mne option.
ch_names
¶Channel names.
clear
() → None. Remove all items from D.¶data
¶Numpy array of Noise covariance matrix.
fromkeys
(S[, v]) → New dict with keys from S and values equal to v.¶v defaults to None.
get
(k[, d]) → D[k] if k in D, else d. d defaults to None.¶has_key
(k) → True if D has a key k, else False¶items
() → list of D’s (key, value) pairs, as 2-tuples¶iteritems
() → an iterator over the (key, value) items of D¶iterkeys
() → an iterator over the keys of D¶itervalues
() → an iterator over the values of D¶keys
() → list of D’s keys¶nfree
¶Number of degrees of freedom.
plot
(info, exclude=[], colorbar=True, proj=False, show_svd=True, show=True, verbose=None)[source]¶Plot Covariance data.
Parameters: | info: dict
exclude : list of string | str
colorbar : bool
proj : bool
show_svd : bool
show : bool
verbose : bool, str, int, or None
|
---|---|
Returns: | fig_cov : instance of matplotlib.pyplot.Figure
fig_svd : instance of matplotlib.pyplot.Figure | None
|
pop
(k[, d]) → v, remove specified key and return the corresponding value.¶If key is not found, d is returned if given, otherwise KeyError is raised
popitem
() → (k, v), remove and return some (key, value) pair as a¶2-tuple; but raise KeyError if D is empty.
setdefault
(k[, d]) → D.get(k,d), also set D[k]=d if k not in D¶update
([E, ]**F) → None. Update D from dict/iterable E and F.¶If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values
() → list of D’s values¶viewitems
() → a set-like object providing a view on D’s items¶viewkeys
() → a set-like object providing a view on D’s keys¶viewvalues
() → an object providing a view on D’s values¶