mne.Covariance(data, names, bads, projs, nfree, eig=None, eigvec=None, method=None, loglik=None)[source]¶Noise covariance matrix.
Warning
This class should not be instantiated directly, but instead should be created using a covariance reading or computation function.
| Parameters: | data : array-like
names : list of str
bads : list of str
projs : list
nfree : int
eig : array-like | None
eigvec : array-like | None
method : str | None
loglik : float
|
|---|
Attributes
data |
Numpy array of Noise covariance matrix. |
ch_names |
Channel names. |
nfree |
Number of degrees of freedom. |
Methods
__add__(cov) |
Add Covariance taking into account number of degrees of freedom. |
__contains__((k) -> True if D has a key k, …) |
|
__getitem__ |
x.__getitem__(y) <==> x[y] |
__iter__() <==> iter(x) |
|
__len__() <==> len(x) |
|
as_diag() |
Set covariance to be processed as being diagonal. |
clear(() -> None. Remove all items from D.) |
|
copy() |
Copy the Covariance object. |
fromkeys(…) |
v defaults to None. |
get((k[,d]) -> D[k] if k in D, …) |
|
has_key((k) -> True if D has a key k, else False) |
|
items(() -> list of D’s (key, value) pairs, …) |
|
iteritems(() -> an iterator over the (key, …) |
|
iterkeys(() -> an iterator over the keys of D) |
|
itervalues(…) |
|
keys(() -> list of D’s keys) |
|
plot(info[, exclude, colorbar, proj, …]) |
Plot Covariance data. |
pop((k[,d]) -> v, …) |
If key is not found, d is returned if given, otherwise KeyError is raised |
popitem(() -> (k, v), …) |
2-tuple; but raise KeyError if D is empty. |
save(fname) |
Save covariance matrix in a FIF file. |
setdefault((k[,d]) -> D.get(k,d), …) |
|
update(([E, …) |
If E present and has a .keys() method, does: for k in E: D[k] = E[k] |
values(() -> list of D’s values) |
|
viewitems(…) |
|
viewkeys(…) |
|
viewvalues(…) |
__contains__(k) → True if D has a key k, else False¶__getitem__()¶x.__getitem__(y) <==> x[y]
__iter__() <==> iter(x)¶__len__() <==> len(x)¶as_diag()[source]¶Set covariance to be processed as being diagonal.
| Returns: | cov : dict
|
|---|
Notes
This function allows creation of inverse operators equivalent to using the old “–diagnoise” mne option.
ch_names¶Channel names.
clear() → None. Remove all items from D.¶data¶Numpy array of Noise covariance matrix.
fromkeys(S[, v]) → New dict with keys from S and values equal to v.¶v defaults to None.
get(k[, d]) → D[k] if k in D, else d. d defaults to None.¶has_key(k) → True if D has a key k, else False¶items() → list of D’s (key, value) pairs, as 2-tuples¶iteritems() → an iterator over the (key, value) items of D¶iterkeys() → an iterator over the keys of D¶itervalues() → an iterator over the values of D¶keys() → list of D’s keys¶nfree¶Number of degrees of freedom.
plot(info, exclude=[], colorbar=True, proj=False, show_svd=True, show=True, verbose=None)[source]¶Plot Covariance data.
| Parameters: | info: dict
exclude : list of string | str
colorbar : bool
proj : bool
show_svd : bool
show : bool
verbose : bool, str, int, or None
|
|---|---|
| Returns: | fig_cov : instance of matplotlib.pyplot.Figure
fig_svd : instance of matplotlib.pyplot.Figure | None
|
pop(k[, d]) → v, remove specified key and return the corresponding value.¶If key is not found, d is returned if given, otherwise KeyError is raised
popitem() → (k, v), remove and return some (key, value) pair as a¶2-tuple; but raise KeyError if D is empty.
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D¶update([E, ]**F) → None. Update D from dict/iterable E and F.¶If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values() → list of D’s values¶viewitems() → a set-like object providing a view on D’s items¶viewkeys() → a set-like object providing a view on D’s keys¶viewvalues() → an object providing a view on D’s values¶