mne.
compute_raw_covariance
(raw, tmin=0, tmax=None, tstep=0.2, reject=None, flat=None, picks=None, method=’empirical’, method_params=None, cv=3, scalings=None, n_jobs=1, return_estimators=False, reject_by_annotation=True, verbose=None)[source]¶Estimate noise covariance matrix from a continuous segment of raw data.
It is typically useful to estimate a noise covariance from empty room data or time intervals before starting the stimulation.
Note
This function will:
- Partition the data into evenly spaced, equal-length epochs.
- Load them into memory.
- Subtract the mean across all time points and epochs for each channel.
- Process the
Epochs
bycompute_covariance()
.
This will produce a slightly different result compared to
using make_fixed_length_events()
, Epochs
, and
compute_covariance()
directly, since that would (with
the recommended baseline correction) subtract the mean across
time for each epoch (instead of across epochs) for each
channel.
Parameters: | raw : instance of Raw
tmin : float
tmax : float | None (default None)
tstep : float (default 0.2)
reject : dict | None (default None)
flat : dict | None (default None)
picks : array-like of int | None (default None)
method : str | list | None (default ‘empirical’)
method_params : dict | None (default None)
cv : int | sklearn cross_validation object (default 3)
scalings : dict | None (default None)
n_jobs : int (default 1)
return_estimators : bool (default False)
reject_by_annotation : bool
verbose : bool | str | int | None (default None)
|
---|---|
Returns: | cov : instance of Covariance | list
|
See also
compute_covariance