mne.inverse_sparse.
gamma_map
(evoked, forward, noise_cov, alpha, loose=0.2, depth=0.8, xyz_same_gamma=True, maxit=10000, tol=1e-06, update_mode=1, gammas=None, pca=True, return_residual=False, verbose=None)[source]¶Hierarchical Bayes (Gamma-MAP) sparse source localization method.
Models each source time course using a zero-mean Gaussian prior with an unknown variance (gamma) parameter. During estimation, most gammas are driven to zero, resulting in a sparse source estimate, as in [R43] and [R44].
For fixed-orientation forward operators, a separate gamma is used for each source time course, while for free-orientation forward operators, the same gamma is used for the three source time courses at each source space point (separate gammas can be used in this case by using xyz_same_gamma=False).
Parameters: | evoked : instance of Evoked
forward : dict
noise_cov : instance of Covariance
alpha : float
loose : float in [0, 1]
depth: None | float in [0, 1]
xyz_same_gamma : bool
maxit : int
tol : float
update_mode : int
gammas : array, shape=(n_sources,)
pca : bool
return_residual : bool
verbose : bool, str, int, or None
|
---|---|
Returns: | stc : instance of SourceEstimate
residual : instance of Evoked
|
References
[R43] | (1, 2) Wipf et al. Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization, Advances in Neural Information Process. Systems (2007) |
[R44] | (1, 2) Wipf et al. A unified Bayesian framework for MEG/EEG source imaging, NeuroImage, vol. 44, no. 3, pp. 947-66, Mar. 2009. |
mne.inverse_sparse.gamma_map
¶