mne.stats.
ttest_1samp_no_p
(X, sigma=0, method=’relative’)[source]¶Perform t-test with variance adjustment and no p-value calculation.
Parameters: | X : array
sigma : float
method : str
|
---|---|
Returns: | t : array
|
Notes
One can use the conversion:
threshold = -scipy.stats.distributions.t.ppf(p_thresh, n_samples - 1)
to convert a desired p-value threshold to t-value threshold. Don’t forget that for two-tailed tests, p_thresh in the above should be divided by 2.
To use the “hat” adjustment method, a value of sigma=1e-3 may be a reasonable choice. See Ridgway et al. 2012 “The problem of low variance voxels in statistical parametric mapping; a new hat avoids a ‘haircut’”, NeuroImage. 2012 Feb 1;59(3):2131-41.
mne.stats.ttest_1samp_no_p
¶