Decoding real-time data

Supervised machine learning applied to MEG data in sensor space. Here the classifier is updated every 5 trials and the decoding accuracy is plotted

../../_images/sphx_glr_plot_compute_rt_decoder_001.png

Out:

Opening raw data file /home/ubuntu/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Current compensation grade : 0
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
4 projection items activated
5 events found
Events id: [1 2 3 4]
15 events found
Events id: [1 2 3 4]
20 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
21 events found
Events id: [ 1  2  3  4  5 32]
21 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
20 events found
Events id: [ 1  2  3  4  5 32]
21 events found
Events id: [ 1  2  3  4  5 32]
Just got epoch 1
Just got epoch 2
Just got epoch 3
Just got epoch 4
Just got epoch 5
Just got epoch 6
Just got epoch 7
Just got epoch 8
Just got epoch 9
Just got epoch 10
Just got epoch 11
Just got epoch 12
Just got epoch 13
Just got epoch 14
Just got epoch 15
Just got epoch 16
Just got epoch 17
Just got epoch 18
Just got epoch 19
Just got epoch 20
Just got epoch 21
Just got epoch 22
Just got epoch 23
Just got epoch 24
Just got epoch 25
Just got epoch 26
Time of 4.0 seconds exceeded.

# Authors: Mainak Jas <mainak@neuro.hut.fi>
#
# License: BSD (3-clause)

import numpy as np
import matplotlib.pyplot as plt

import mne
from mne.realtime import MockRtClient, RtEpochs
from mne.datasets import sample

print(__doc__)

# Fiff file to simulate the realtime client
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)

tmin, tmax = -0.2, 0.5
event_id = dict(aud_l=1, vis_l=3)

tr_percent = 60  # Training percentage
min_trials = 10  # minimum trials after which decoding should start

# select gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

# create the mock-client object
rt_client = MockRtClient(raw)

# create the real-time epochs object
rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks, decim=1,
                     reject=dict(grad=4000e-13, eog=150e-6), baseline=None,
                     isi_max=4.)

# start the acquisition
rt_epochs.start()

# send raw buffers
rt_client.send_data(rt_epochs, picks, tmin=0, tmax=90, buffer_size=1000)

# Decoding in sensor space using a linear SVM
n_times = len(rt_epochs.times)

from sklearn import preprocessing  # noqa
from sklearn.svm import SVC  # noqa
from sklearn.pipeline import Pipeline  # noqa
from sklearn.cross_validation import cross_val_score, ShuffleSplit  # noqa
from mne.decoding import Vectorizer, FilterEstimator  # noqa


scores_x, scores, std_scores = [], [], []

# don't highpass filter because it's epoched data and the signal length
# is small
filt = FilterEstimator(rt_epochs.info, None, 40)
scaler = preprocessing.StandardScaler()
vectorizer = Vectorizer()
clf = SVC(C=1, kernel='linear')

concat_classifier = Pipeline([('filter', filt), ('vector', vectorizer),
                              ('scaler', scaler), ('svm', clf)])

data_picks = mne.pick_types(rt_epochs.info, meg='grad', eeg=False, eog=True,
                            stim=False, exclude=raw.info['bads'])
ax = plt.subplot(111)
ax.set_xlabel('Trials')
ax.set_ylabel('Classification score (% correct)')
ax.set_title('Real-time decoding')
ax.set_xlim([min_trials, 50])
ax.set_ylim([30, 105])
plt.axhline(50, color='k', linestyle='--', label="Chance level")
plt.show(block=False)

for ev_num, ev in enumerate(rt_epochs.iter_evoked()):

    print("Just got epoch %d" % (ev_num + 1))

    if ev_num == 0:
        X = ev.data[None, data_picks, :]
        y = int(ev.comment)  # the comment attribute contains the event_id
    else:
        X = np.concatenate((X, ev.data[None, data_picks, :]), axis=0)
        y = np.append(y, int(ev.comment))

    if ev_num >= min_trials:

        cv = ShuffleSplit(len(y), 5, test_size=0.2, random_state=42)
        scores_t = cross_val_score(concat_classifier, X, y, cv=cv,
                                   n_jobs=1) * 100

        std_scores.append(scores_t.std())
        scores.append(scores_t.mean())
        scores_x.append(ev_num)

        # Plot accuracy

        plt.plot(scores_x[-2:], scores[-2:], '-x', color='b',
                 label="Classif. score")
        ax.hold(True)
        ax.plot(scores_x[-1], scores[-1])

        hyp_limits = (np.asarray(scores) - np.asarray(std_scores),
                      np.asarray(scores) + np.asarray(std_scores))
        fill = plt.fill_between(scores_x, hyp_limits[0], y2=hyp_limits[1],
                                color='b', alpha=0.5)
        plt.pause(0.01)
        plt.draw()
        ax.collections.remove(fill)  # Remove old fill area

plt.fill_between(scores_x, hyp_limits[0], y2=hyp_limits[1], color='b',
                 alpha=0.5)
plt.draw()  # Final figure

Total running time of the script: ( 0 minutes 47.879 seconds)

Generated by Sphinx-Gallery