Evoked
data structure: evoked/averaged data¶import os.path as op
import mne
The Evoked
data structure is mainly used for storing
averaged data over trials. In MNE the evoked objects are created by averaging
epochs data with mne.Epochs.average()
. Here we read the evoked dataset
from a file.
data_path = mne.datasets.sample.data_path()
fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
evokeds = mne.read_evokeds(fname, baseline=(None, 0), proj=True)
print(evokeds)
Out:
Reading /home/ubuntu/mne_data/MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Left Auditory)
0 CTF compensation matrices available
nave = 55 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Right Auditory)
0 CTF compensation matrices available
nave = 61 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Left visual)
0 CTF compensation matrices available
nave = 67 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Right visual)
0 CTF compensation matrices available
nave = 58 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
[<Evoked | comment : 'Left Auditory', kind : average, time : [-0.199795, 0.499488], n_epochs : 55, n_channels x n_times : 376 x 421, ~4.9 MB>, <Evoked | comment : 'Right Auditory', kind : average, time : [-0.199795, 0.499488], n_epochs : 61, n_channels x n_times : 376 x 421, ~4.9 MB>, <Evoked | comment : 'Left visual', kind : average, time : [-0.199795, 0.499488], n_epochs : 67, n_channels x n_times : 376 x 421, ~4.9 MB>, <Evoked | comment : 'Right visual', kind : average, time : [-0.199795, 0.499488], n_epochs : 58, n_channels x n_times : 376 x 421, ~4.9 MB>]
Notice that the reader function returned a list of evoked instances. This is
because you can store multiple categories into a single file. Here we have
categories of
['Left Auditory', 'Right Auditory', 'Left Visual', 'Right Visual']
.
We can also use condition
parameter to read in only one category.
evoked = mne.read_evokeds(fname, condition='Left Auditory')
evoked.apply_baseline((None, 0)).apply_proj()
print(evoked)
Out:
Reading /home/ubuntu/mne_data/MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Left Auditory)
0 CTF compensation matrices available
nave = 55 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
No baseline correction applied
Applying baseline correction (mode: mean)
Projections have already been applied. Setting proj attribute to True.
<Evoked | comment : 'Left Auditory', kind : average, time : [-0.199795, 0.499488], n_epochs : 55, n_channels x n_times : 376 x 421, ~4.9 MB>
If you’re gone through the tutorials of raw and epochs datasets, you’re
probably already familiar with the Info
attribute.
There is nothing new or special with the evoked.info
. All the relevant
info is still there.
print(evoked.info)
print(evoked.times)
Out:
<Info | 19 non-empty fields
bads : list | MEG 2443, EEG 053
ch_names : list | MEG 0113, MEG 0112, MEG 0111, MEG 0122, MEG 0123, ...
chs : list | 376 items (EOG: 1, EEG: 60, STIM: 9, GRAD: 204, MAG: 102)
comps : list | 0 items
custom_ref_applied : bool | False
dev_head_t : 'mne.transforms.Transform | 3 items
dig : list | 146 items
events : list | 0 items
file_id : dict | 4 items
highpass : float | 0.10000000149 Hz
hpi_meas : list | 1 items
hpi_results : list | 1 items
lowpass : float | 40.0 Hz
maxshield : bool | False
meas_date : numpy.ndarray | 2002-12-03 19:01:10
meas_id : dict | 4 items
nchan : int | 376
projs : list | PCA-v1: on, PCA-v2: on, PCA-v3: on, ...
sfreq : float | 600.614990234 Hz
acq_pars : NoneType
acq_stim : NoneType
ctf_head_t : NoneType
description : NoneType
dev_ctf_t : NoneType
experimenter : NoneType
hpi_subsystem : NoneType
kit_system_id : NoneType
line_freq : NoneType
proj_id : NoneType
proj_name : NoneType
subject_info : NoneType
xplotter_layout : NoneType
>
[-0.19979521 -0.19813025 -0.19646529 -0.19480033 -0.19313537 -0.19147041
-0.18980545 -0.18814049 -0.18647553 -0.18481057 -0.18314561 -0.18148065
-0.17981569 -0.17815073 -0.17648577 -0.17482081 -0.17315585 -0.17149089
-0.16982593 -0.16816097 -0.16649601 -0.16483105 -0.16316609 -0.16150113
-0.15983617 -0.15817121 -0.15650625 -0.15484129 -0.15317633 -0.15151137
-0.14984641 -0.14818145 -0.14651649 -0.14485153 -0.14318657 -0.14152161
-0.13985665 -0.13819169 -0.13652673 -0.13486177 -0.13319681 -0.13153185
-0.12986689 -0.12820193 -0.12653697 -0.12487201 -0.12320705 -0.12154209
-0.11987713 -0.11821217 -0.11654721 -0.11488225 -0.11321729 -0.11155233
-0.10988737 -0.10822241 -0.10655745 -0.10489249 -0.10322753 -0.10156257
-0.09989761 -0.09823265 -0.09656769 -0.09490273 -0.09323777 -0.09157281
-0.08990785 -0.08824289 -0.08657793 -0.08491297 -0.08324801 -0.08158305
-0.07991809 -0.07825313 -0.07658817 -0.0749232 -0.07325824 -0.07159328
-0.06992832 -0.06826336 -0.0665984 -0.06493344 -0.06326848 -0.06160352
-0.05993856 -0.0582736 -0.05660864 -0.05494368 -0.05327872 -0.05161376
-0.0499488 -0.04828384 -0.04661888 -0.04495392 -0.04328896 -0.041624
-0.03995904 -0.03829408 -0.03662912 -0.03496416 -0.0332992 -0.03163424
-0.02996928 -0.02830432 -0.02663936 -0.0249744 -0.02330944 -0.02164448
-0.01997952 -0.01831456 -0.0166496 -0.01498464 -0.01331968 -0.01165472
-0.00998976 -0.0083248 -0.00665984 -0.00499488 -0.00332992 -0.00166496
0. 0.00166496 0.00332992 0.00499488 0.00665984 0.0083248
0.00998976 0.01165472 0.01331968 0.01498464 0.0166496 0.01831456
0.01997952 0.02164448 0.02330944 0.0249744 0.02663936 0.02830432
0.02996928 0.03163424 0.0332992 0.03496416 0.03662912 0.03829408
0.03995904 0.041624 0.04328896 0.04495392 0.04661888 0.04828384
0.0499488 0.05161376 0.05327872 0.05494368 0.05660864 0.0582736
0.05993856 0.06160352 0.06326848 0.06493344 0.0665984 0.06826336
0.06992832 0.07159328 0.07325824 0.0749232 0.07658817 0.07825313
0.07991809 0.08158305 0.08324801 0.08491297 0.08657793 0.08824289
0.08990785 0.09157281 0.09323777 0.09490273 0.09656769 0.09823265
0.09989761 0.10156257 0.10322753 0.10489249 0.10655745 0.10822241
0.10988737 0.11155233 0.11321729 0.11488225 0.11654721 0.11821217
0.11987713 0.12154209 0.12320705 0.12487201 0.12653697 0.12820193
0.12986689 0.13153185 0.13319681 0.13486177 0.13652673 0.13819169
0.13985665 0.14152161 0.14318657 0.14485153 0.14651649 0.14818145
0.14984641 0.15151137 0.15317633 0.15484129 0.15650625 0.15817121
0.15983617 0.16150113 0.16316609 0.16483105 0.16649601 0.16816097
0.16982593 0.17149089 0.17315585 0.17482081 0.17648577 0.17815073
0.17981569 0.18148065 0.18314561 0.18481057 0.18647553 0.18814049
0.18980545 0.19147041 0.19313537 0.19480033 0.19646529 0.19813025
0.19979521 0.20146017 0.20312513 0.20479009 0.20645505 0.20812001
0.20978497 0.21144993 0.21311489 0.21477985 0.21644481 0.21810977
0.21977473 0.22143969 0.22310465 0.22476961 0.22643457 0.22809954
0.2297645 0.23142946 0.23309442 0.23475938 0.23642434 0.2380893
0.23975426 0.24141922 0.24308418 0.24474914 0.2464141 0.24807906
0.24974402 0.25140898 0.25307394 0.2547389 0.25640386 0.25806882
0.25973378 0.26139874 0.2630637 0.26472866 0.26639362 0.26805858
0.26972354 0.2713885 0.27305346 0.27471842 0.27638338 0.27804834
0.2797133 0.28137826 0.28304322 0.28470818 0.28637314 0.2880381
0.28970306 0.29136802 0.29303298 0.29469794 0.2963629 0.29802786
0.29969282 0.30135778 0.30302274 0.3046877 0.30635266 0.30801762
0.30968258 0.31134754 0.3130125 0.31467746 0.31634242 0.31800738
0.31967234 0.3213373 0.32300226 0.32466722 0.32633218 0.32799714
0.3296621 0.33132706 0.33299202 0.33465698 0.33632194 0.3379869
0.33965186 0.34131682 0.34298178 0.34464674 0.3463117 0.34797666
0.34964162 0.35130658 0.35297154 0.3546365 0.35630146 0.35796642
0.35963138 0.36129634 0.3629613 0.36462626 0.36629122 0.36795618
0.36962114 0.3712861 0.37295106 0.37461602 0.37628098 0.37794594
0.37961091 0.38127587 0.38294083 0.38460579 0.38627075 0.38793571
0.38960067 0.39126563 0.39293059 0.39459555 0.39626051 0.39792547
0.39959043 0.40125539 0.40292035 0.40458531 0.40625027 0.40791523
0.40958019 0.41124515 0.41291011 0.41457507 0.41624003 0.41790499
0.41956995 0.42123491 0.42289987 0.42456483 0.42622979 0.42789475
0.42955971 0.43122467 0.43288963 0.43455459 0.43621955 0.43788451
0.43954947 0.44121443 0.44287939 0.44454435 0.44620931 0.44787427
0.44953923 0.45120419 0.45286915 0.45453411 0.45619907 0.45786403
0.45952899 0.46119395 0.46285891 0.46452387 0.46618883 0.46785379
0.46951875 0.47118371 0.47284867 0.47451363 0.47617859 0.47784355
0.47950851 0.48117347 0.48283843 0.48450339 0.48616835 0.48783331
0.48949827 0.49116323 0.49282819 0.49449315 0.49615811 0.49782307
0.49948803]
The evoked data structure also contains some new attributes easily accessible:
print(evoked.nave) # Number of averaged epochs.
print(evoked.first) # First time sample.
print(evoked.last) # Last time sample.
print(evoked.comment) # Comment on dataset. Usually the condition.
print(evoked.kind) # Type of data, either average or standard_error.
Out:
55
-120
300
Left Auditory
average
The data is also easily accessible. Since the evoked data arrays are usually much smaller than raw or epochs datasets, they are preloaded into the memory when the evoked object is constructed. You can access the data as a numpy array.
data = evoked.data
print(data.shape)
Out:
(376, 421)
The data is arranged in an array of shape (n_channels, n_times). Notice that unlike epochs, evoked object does not support indexing. This means that to access the data of a specific channel you must use the data array directly.
print('Data from channel {0}:'.format(evoked.ch_names[10]))
print(data[10])
Out:
Data from channel MEG 0142:
[ -5.23565064e-13 -4.71585139e-13 -3.86683209e-13 -2.83273649e-13
-1.77306112e-13 -8.40611219e-14 -1.61924078e-14 1.77381210e-14
1.40744336e-14 -2.58271015e-14 -9.61522377e-14 -1.87714557e-13
-2.89375756e-13 -3.89584208e-13 -4.77813276e-13 -5.45725710e-13
-5.87940404e-13 -6.02348966e-13 -5.89997316e-13 -5.54604288e-13
-5.01825677e-13 -4.38392525e-13 -3.71250724e-13 -3.06800010e-13
-2.50310349e-13 -2.05542229e-13 -1.74580799e-13 -1.57849570e-13
-1.54264699e-13 -1.61491852e-13 -1.76251146e-13 -1.94655758e-13
-2.12557648e-13 -2.25896541e-13 -2.31046307e-13 -2.25152439e-13
-2.06448989e-13 -1.74519893e-13 -1.30478919e-13 -7.70193540e-14
-1.83008226e-14 4.03521585e-14 9.29388774e-14 1.33429445e-13
1.56509623e-13 1.58334178e-13 1.37187906e-13 9.39425253e-14
3.22229137e-14 -4.17800040e-14 -1.19859868e-13 -1.92671983e-13
-2.50842568e-13 -2.86173426e-13 -2.92783887e-13 -2.68019382e-13
-2.12986679e-13 -1.32611683e-13 -3.51871554e-14 6.85579487e-14
1.66763009e-13 2.47947716e-13 3.02530649e-13 3.24149315e-13
3.10581307e-13 2.64139575e-13 1.91462745e-13 1.02720927e-13
1.03287566e-14 -7.26627789e-14 -1.34281272e-13 -1.65226194e-13
-1.60116285e-13 -1.18226284e-13 -4.36092726e-14 5.54097285e-14
1.67298585e-13 2.78793911e-13 3.76588471e-13 4.48998456e-13
4.87395875e-13 4.87219113e-13 4.48443612e-13 3.75461218e-13
2.76415294e-13 1.62087994e-13 4.45132094e-14 -6.44960341e-14
-1.54711526e-13 -2.18570615e-13 -2.51858908e-13 -2.53926201e-13
-2.27449342e-13 -1.77801407e-13 -1.12146848e-13 -3.84001762e-14
3.58008409e-14 1.03977395e-13 1.61445919e-13 2.05649837e-13
2.36181961e-13 2.54522470e-13 2.63571764e-13 2.67051607e-13
2.68884577e-13 2.72619954e-13 2.80991167e-13 2.95625408e-13
3.16936487e-13 3.44178221e-13 3.75633015e-13 4.08893096e-13
4.41194502e-13 4.69755657e-13 4.92097469e-13 5.06313899e-13
5.11282935e-13 5.06807216e-13 4.93681895e-13 4.73681867e-13
4.49469792e-13 4.24418784e-13 4.02353520e-13 3.87213731e-13
3.82662229e-13 3.91664527e-13 4.16082427e-13 4.56330613e-13
5.11154456e-13 5.77570787e-13 6.51011273e-13 7.25678523e-13
7.95099727e-13 8.52825900e-13 8.93207072e-13 9.12141741e-13
9.07702901e-13 8.80534327e-13 8.33944572e-13 7.73666285e-13
7.07272026e-13 6.43315198e-13 5.90287033e-13 5.55525480e-13
5.44224439e-13 5.58690011e-13 5.97957357e-13 6.57847998e-13
7.31476284e-13 8.10156194e-13 8.84600880e-13 9.46254643e-13
9.88574502e-13 1.00807726e-12 1.00499007e-12 9.83397434e-13
9.50840173e-13 9.17398638e-13 8.94372859e-13 8.92716238e-13
9.21443671e-13 9.86219107e-13 1.08833553e-12 1.22422732e-12
1.38560927e-12 1.56023408e-12 1.73319647e-12 1.88862055e-12
2.01152581e-12 2.08962862e-12 2.11486154e-12 2.08440814e-12
2.00110619e-12 1.87319400e-12 1.71340236e-12 1.53751814e-12
1.36259665e-12 1.20504112e-12 1.07878068e-12 9.93775115e-13
9.55012122e-13 9.62109576e-13 1.00955776e-12 1.08754957e-12
1.18328588e-12 1.28257998e-12 1.37155673e-12 1.43824115e-12
1.47384311e-12 1.47359718e-12 1.43707407e-12 1.36794754e-12
1.27326637e-12 1.16234419e-12 1.04542210e-12 9.32274111e-13
8.30941537e-13 7.46741058e-13 6.81670773e-13 6.34267928e-13
5.99935866e-13 5.71674711e-13 5.41123551e-13 4.99774414e-13
4.40203914e-13 3.57166739e-13 2.48419283e-13 1.15170557e-13
-3.78913166e-14 -2.03000897e-13 -3.70094595e-13 -5.27874540e-13
-6.65031024e-13 -7.71479002e-13 -8.39461228e-13 -8.64396908e-13
-8.45371742e-13 -7.85221934e-13 -6.90204626e-13 -5.69301044e-13
-4.33236931e-13 -2.93344145e-13 -1.60393477e-13 -4.35434005e-14
5.04819854e-14 1.17891112e-13 1.57953568e-13 1.72760525e-13
1.66659269e-13 1.45453217e-13 1.15476765e-13 8.26756047e-14
5.18146953e-14 2.59151892e-14 5.99016124e-15 -8.89685393e-15
-2.12682425e-14 -3.46297138e-14 -5.27233119e-14 -7.87501478e-14
-1.14684754e-13 -1.60783835e-13 -2.15367722e-13 -2.74908115e-13
-3.34418383e-13 -3.88090792e-13 -4.30093130e-13 -4.55412599e-13
-4.60624828e-13 -4.44475585e-13 -4.08188062e-13 -3.55446154e-13
-2.92046256e-13 -2.25259214e-13 -1.62982264e-13 -1.12791613e-13
-8.10178973e-14 -7.19678908e-14 -8.73945749e-14 -1.26281955e-13
-1.84975724e-13 -2.57635654e-13 -3.36953098e-13 -4.15032286e-13
-4.84326469e-13 -5.38499603e-13 -5.73113386e-13 -5.86050425e-13
-5.77632389e-13 -5.50426131e-13 -5.08778374e-13 -4.58150576e-13
-4.04351788e-13 -3.52776159e-13 -3.07748862e-13 -2.72061081e-13
-2.46751528e-13 -2.31146472e-13 -2.23143154e-13 -2.19677267e-13
-2.17302409e-13 -2.12785315e-13 -2.03632351e-13 -1.88467661e-13
-1.67214705e-13 -1.41060149e-13 -1.12212720e-13 -8.35028755e-14
-5.78867462e-14 -3.79347716e-14 -2.53861604e-14 -2.08334863e-14
-2.35887818e-14 -3.17473644e-14 -4.24381278e-14 -5.22259943e-14
-5.75990700e-14 -5.54777566e-14 -4.36592803e-14 -2.11487760e-14
1.16798141e-14 5.31049618e-14 1.00257101e-13 1.49459440e-13
1.96659817e-13 2.37887555e-13 2.69671318e-13 2.89362104e-13
2.95325316e-13 2.86983257e-13 2.64720905e-13 2.29684506e-13
1.83521713e-13 1.28110148e-13 6.53360301e-14 -3.04685471e-15
-7.54562181e-14 -1.50414202e-13 -2.26408447e-13 -3.01714358e-13
-3.74233879e-13 -4.41404448e-13 -5.00216121e-13 -5.47361857e-13
-5.79519643e-13 -5.93738786e-13 -5.87876290e-13 -5.61020374e-13
-5.13820836e-13 -4.48667618e-13 -3.69657925e-13 -2.82341748e-13
-1.93249565e-13 -1.09253600e-13 -3.68349940e-14 1.86446047e-14
5.35720218e-14 6.65164407e-14 5.84033363e-14 3.23972852e-14
-6.50200446e-15 -5.20940431e-14 -9.77654042e-14 -1.37316633e-13
-1.65718982e-13 -1.79691788e-13 -1.78025648e-13 -1.61607341e-13
-1.33151857e-13 -9.66892395e-14 -5.68891682e-14 -1.83317929e-14
1.51602091e-14 4.10302853e-14 5.82578888e-14 6.73623633e-14
7.01465138e-14 6.92389265e-14 6.75196288e-14 6.75415172e-14
7.10480311e-14 7.86823495e-14 8.99402113e-14 1.03374590e-13
1.17022657e-13 1.28967475e-13 1.37937400e-13 1.43814668e-13
1.47955853e-13 1.53234777e-13 1.63782599e-13 1.84435646e-13
2.19968122e-13 2.74223234e-13 3.49275554e-13 4.44780522e-13
5.57625480e-13 6.81969209e-13 8.09696537e-13 9.31246736e-13
1.03672137e-12 1.11711547e-12 1.16551120e-12 1.17804259e-12
1.15449453e-12 1.09843252e-12 1.01682821e-12 9.19224021e-13
8.16544850e-13 7.19722944e-13 6.38323538e-13 5.79369223e-13
5.46529620e-13 5.39785783e-13 5.55614689e-13 5.87656837e-13
6.27763208e-13 6.67254220e-13 6.98205534e-13 7.14563717e-13
7.12924662e-13 6.92874971e-13 6.56842603e-13 6.09508183e-13
5.56870605e-13 5.05132568e-13 4.59588123e-13 4.23692512e-13
3.98471179e-13 3.82353124e-13 3.71460790e-13 3.60308185e-13
3.42787112e-13 3.13288342e-13 2.67769464e-13 2.04599607e-13
1.25039471e-13 3.32753967e-14 -6.40049014e-14 -1.58436924e-13
-2.41083752e-13]
If you want to import evoked data from some other system and you have it in a
numpy array you can use mne.EvokedArray
for that. All you need is
the data and some info about the evoked data. For more information, see
Creating MNE-Python’s data structures from scratch.
evoked = mne.EvokedArray(data, evoked.info, tmin=evoked.times[0])
evoked.plot()
To write an evoked dataset to a file, use the mne.Evoked.save()
method.
To save multiple categories to a single file, see mne.write_evokeds()
.
Total running time of the script: ( 0 minutes 1.807 seconds)