mne.filter.filter_data(data, sfreq, l_freq, h_freq, picks=None, filter_length=’auto’, l_trans_bandwidth=’auto’, h_trans_bandwidth=’auto’, n_jobs=1, method=’fir’, iir_params=None, copy=True, phase=’zero’, fir_window=’hamming’, verbose=None)[source]¶Filter a subset of channels.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
filter to the channels selected by picks.
l_freq and h_freq are the frequencies below which and above
which, respectively, to filter out of the data. Thus the uses are:
l_freq < h_freq: band-pass filterl_freq > h_freq: band-stop filterl_freq is not None and h_freq is None: high-pass filterl_freq is None and h_freq is not None: low-pass filter
Note
If n_jobs > 1, more memory is required as
len(picks) * n_times additional time points need to
be temporaily stored in memory.
| Parameters: | data : ndarray, shape (…, n_times)
sfreq : float
l_freq : float | None
h_freq : float | None
picks : array-like of int | None
filter_length : str | int
l_trans_bandwidth : float | str
h_trans_bandwidth : float | str
n_jobs : int | str
method : str
iir_params : dict | None
copy : bool
phase : str
fir_window : str
verbose : bool, str, int, or None
|
|---|---|
| Returns: | data : ndarray, shape (…, n_times)
|
Notes
For more information, see the tutorials Background information on filtering
and Filtering and resampling data, and mne.filter.create_filter().
mne.filter.filter_data¶